Skip to main content
Log in

Biodetoxification of cyanide-containing industrial wastewaters by Rhodococcus UKMP-5M

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The utilization of cyanide in many industrial processes despite its toxicity generated voluminous effluents, which necessitated treatment prior to discharge into the environment. In the present study, Rhodococcus UKMP-5M was solely employed as biological tool to detoxify three different cyanide-containing industrial wastewaters with different characteristics since initial attempt to employ mixed culture of Rhodococcus strains was unsuccessful due to synergistic interaction which yielded only 19% biodetoxification of 12 mM cyanide. The bacterium was able to achieve 97% cyanide removal efficiency in Wastewater A (pH 8.4) after 19 days of incubation. However, the growing cells needed the supplementation of nutrients, which was uneconomical besides requiring extensive time for complete detoxification. In contrast, the employment of immobilized beads of Rhodococcus UKMP-5M, which required a relatively straightforward method, were cost-effective in detoxifying almost 100% of 15 mM cyanide in Wastewater C (pH 9.5) within a short period of 3 days of incubation. This discovery is highly significant since most wastewaters pHs originating from various industrial applications involving cyanide often range from 6 to 9.5 and this strain is therefore seemingly effective for biodetoxification of cyanide-containing wastewaters with high pH values. In addition, it is interesting to note that the presence of heavy metals in the wastewaters did not inhibit the cyanide-degrading activity of the bacterium. The findings from this study provided essential information to develop a pilot plant on a technical scale for the biotreatment of industrial effluents bearing cyanide, which should be of great interest from an environmental and economic point of views.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams D.J., Van Komen J. & Pickett T.M. 2001. Biological cyanide degradation, pp. 203–213. In: Young C. (ed.), Cyanide: Social, Industrial and Economic Aspects. The Metals Society, Warrendale, PA.

    Google Scholar 

  • Akcil A. 2003. Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol. Adv. 21: 501–510.

    Article  CAS  PubMed  Google Scholar 

  • Akcil A., Karahan A.G., Ciftci H. & Sagdic O. 2003. Biological treatment of cyanide by natural isolated bacteria (Pseudomonas species). Miner. Eng. 16: 643–649.

    Article  CAS  Google Scholar 

  • Akcil A. & Mudder T. 2003. Microbial destruction of cyanide wastes in gold mining: process review. Biotechnol. Lett. 25: 445–450.

    Article  CAS  PubMed  Google Scholar 

  • APHA. 2001. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., USA.

    Google Scholar 

  • Babu G.R.V., Wolfram J.H. & Chapatwala K.D. 1992. Conversion of sodium cyanide to carbon dioxide and ammonia by immobilized cells of Pseudomonas putida. J. Ind. Microbiol. 9: 235–238.

    Article  CAS  Google Scholar 

  • Bosecker K. & Blumenroth P. 2001. Microbial treatment of cyanide and heavy metals containing waste water from gold mining, Proceedings of the 17th International Mining Congress and Exhibition of Turkey, IMCET, Turkey.

    Google Scholar 

  • Botz M., Mudder T. & Akcil A. 2005. Cyanide treatment: physical, chemical and biological processes, pp. 672–700. In: Adams M. (ed.), Advances in Gold Ore Processing. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Campos M.G., Pereira P. & Roseiro J.C. 2006. Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilized Fusarium oxysporum CCMI 876 and Methylobacterium sp. RXM CCMI 908. Enzyme Microb. Technol. 38: 848–854.

    Article  CAS  Google Scholar 

  • Chapatwala K.D., Babu G.R.V. & Wolfram J.H. 1993. Screening of encapsulated microbial cells for the degradation of inorganic cyanides. J. Ind. Microbiol. 11: 69–72.

    Article  CAS  Google Scholar 

  • Chen C.Y., Kao C.M. & Chen S.C. 2008. Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater. Chemosphere 71: 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Dash R.R., Balomajumdar C & Kumar A. 2008. Treatment of metal cyanide bearing wastewater by simultaneous adsorption and biodegradation (SAB). J. Hazard. Mater. 152: 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Dash R.R., Gaur A. & Balomajumder C. 2009. Cyanide in industrial wastewaters and its removal: a review on biotreatment. J. Hazard. Mater. 163: 1–11.

    Article  PubMed  Google Scholar 

  • Dumestre A., Chone T., Portal J.M., Gerard M. & Berthelin J. 1997. Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils. Appl. Environ. Microbiol. 63: 2729–2734.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ezzi M.I. & Lynch J.M. 2005. Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme. Microb. Technol. 36: 849–854.

    Article  CAS  Google Scholar 

  • Goksungur Y. & Zorlu N. 2001. Production of ethanol from beet molasses by Ca-alginate immobilized yeast cells in a packed-bed bioreactor. Turkish J. Biol. 25: 265–275.

    CAS  Google Scholar 

  • Huertas M. J., Saez L. P., Roldan M. D., Luque-Almagro V. M., Martinez-Luque M. & Blasco R. 2010. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor: influence of pH. J. Hazard. Mater. 179: 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Knowles C.J. 1976. Microorganisms and cyanide. Bacteriol. Rev. 40: 652–680.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kowalska M., Bodzek M. & Bohdziewicz J. 1998. Biodegradation of phenols and cyanides using membranes with immobilized microorganisms. Process Biochem. 33: 189–197.

    Article  CAS  Google Scholar 

  • Kunz D.A., Nagappan O., Silva-Avalos J. & Delong G.T. 1992. Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion. Appl. Environ. Microbiol. 58: 2022–2029.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larkin M.J., Kulakov L.A. & Allen C.C.R. 2010. Rhodococcus, pp. 1840–1852. In: Timmis K.N. (ed.), Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Lee C.K. & Low K.S. 1980. A study of wastewater discharge from electroplating factories. Pertanika 3: 159–161.

    CAS  Google Scholar 

  • Mudder T.I. & Botz M.M. 2004. Cyanide and society: a critical review. Eur. J. Miner. Process. Environ. Prot. 4: 62–74.

    Google Scholar 

  • Mudder T.I., Botz M.M. & Smith A. 2001. Chemistry and Treatment of Cyanidation Wastes, 2nd Ed. Mining Journal Books, Ltd., London, UK.

    Google Scholar 

  • Nagashima S. 1977. Spectrophotometric determination of cyanide with γ-picoline and barbituric acid. Anal. Chim. Acta 91: 303–306.

    Article  CAS  Google Scholar 

  • Nallapan Maniyam M., Sjahrir F. & Ibrahim A.L. 2011. Bioremediation of cyanide by optimized resting cells of Rhodococcus strains isolated from Peninsular Malaysia. Int. J. Biosci. Biochem. Bioinform. 1: 98–101.

    Google Scholar 

  • Nallapan Maniyam M., Sjahrir F. & Ibrahim A.L. 2012. Cyanide degradation by immobilized cells of Rhodococcus UKMP-5M. Biologia. 67: 837–844.

    Article  CAS  Google Scholar 

  • Nallapan Maniyam M., Sjahrir F., Ibrahim A.L. & Cass A.E.G. 2013. Biodegradation of cyanide by Rhodococcus UKMP-5M. Biologia 68: 177–185.

    Article  CAS  Google Scholar 

  • Nussinovitch A. 2010. Bead formation, strengthening and modification. fundamentals and applications, pp 27–52. In: Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Patil Y.B. & Paknikar K.M. 2000. Biodetoxification of sivercyanide from electroplating industry wastewater. Lett. Appl. Microbiol. 30: 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Sharma S.L. & Pant A. 2001. Crude oil degradation by a marine actinomycete Rhodococcus sp. Ind. J. Marine Sci. 30: 146–150.

    CAS  Google Scholar 

  • Sharma V.K., Yngard R.A., Cabelli D.E. & Baum J.C. 2008. Ferrate (VI) and ferrate (V) oxidation of cyanide, thiocyanate, and copper (I) cyanide. Radiat. Phys. Chem. 77: 761–767.

    Article  CAS  Google Scholar 

  • Zhou X.Y., Liu L., Chen Y., Xu S. & Chen J. 2007. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii. Can. J. Microbiol. 53: 1033–1037.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maegala Nallapan Maniyam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nallapan Maniyam, M., Sjahrir, F., Ibrahim, A.L. et al. Biodetoxification of cyanide-containing industrial wastewaters by Rhodococcus UKMP-5M. Biologia 69, 1635–1643 (2014). https://doi.org/10.2478/s11756-014-0487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0487-0

Key words

Navigation