Skip to main content

Advertisement

Log in

Red blood cell folate concentrations in term newborns: recent findings in the Slovak Republic

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Folate plays one of the most important functions for nucleotide biosynthesis and cellular methylation reactions in cells. Folate-mediated one-carbon metabolism is essential for metabolic processes in the human body. During periods of rapid cell growth, such as perinatal period, increased amounts of folate are required. The determination of red blood cell (RBC) folate concentration levels is the most accurate indicator of long-term folate level status in the body. This prospective study determined RBC folate concentration levels on the first day of life from umbilical cord blood samples in the whole group of full-term newborns (n = 150), who were hospitalized at the Department of Neonatology at the University Hospital in Bratislava. Immunochemical analysis for the determination of folate levels in erythrocytes was performed (Roche Diagnostics, Germany). Mothers were asked to select different types of food and use folic acid or other multivitamin supplements containing also folic acid. Our results of RBC folate ranged from 625 to 1748 ng/mL (5th–95th percentile). The median was 935 ng/mL and deficiency was not observed in any sample. RBC folate concentration levels in newborns due to mother’s intake of multivitamin supplements were significantly increased (p = 0.02). No differences were observed in the levels of RBC folate concentration when mothers used only folic acid. The RBC folate concentration tended to change based on many factors on both the mother’s and the newborn’s sides. Our results showed different results of RBC folate when focused on neonatal period and maternal intake of vitamins during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5-MTHF:

5-methyl-tetrahydrofolate

5.10-MTHF:

5.10-methyl-tetrahydrofolate

MTHFR:

methylentetrahydrofolatereductase

NTD:

neural tube defects

RBC:

red blood cell

References

  • Asfour R., Wahbeh N., Waslien C.I., Guindi S. & Darby W.J. 1977. Folacin requirement of children. III. Normal infants. Am. J. Clin. Nutr. 30: 1098–1105.

    CAS  PubMed  Google Scholar 

  • Banhidy F., Dakhlaoui A., Puho E.H. & Czeizel A.E. 2011. Is there a reduction of congenital abnormalities in the off-spring of diabetic pregnant women after folic acid supplementation? A population-based case-control study. Congenit. Anom. (Kyoto) 51: 80–86.

    Article  CAS  Google Scholar 

  • Beaudin A.E. & Stover P.J. 2007. Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. Birth Defects Res. C Embryo Today 81: 183–203.

    Article  CAS  PubMed  Google Scholar 

  • Becker W., Lyhne N., Pedersen A.N., Aro A., Fogelholm M., Phorsdottir I., Alexander J., Anderssen S.A., Meltzer H.M. & Pedersen J.I. 2004. Nordic Nutrition Recommendations 2004 — integrating nutrition and physical activity. Scand. J. Nutr. 48: 178–187.

    Article  Google Scholar 

  • Behunova J., Klimcakova L., Zavadilikova E., Potocekova D., Sykora P. & Podracka L. 2010. Methylenetetrahydrofolate reductase gene polymorphisms and neural tube defects epidemiology in the Slovak population. Birth Defects Res. A Clin. Mol. Teratol. 88: 695–700.

    Article  CAS  PubMed  Google Scholar 

  • Bjelakovic L., Kocic G., Stojanovic I., Jevtovic-Stoimenov T., Najman S., Sokolovic D., Stojanovic S. & Bjelakovic G. 2012. Folic acid effect on arginase activity in human colostrum and mature milk. Pteridines 23: 33–38.

    Article  CAS  Google Scholar 

  • Bjørke-Monsen A.L., Vollset S.E., Refsum H., Markestad T. & Ueland P.M. 2004. Hematological parameters and cobalamin status in infants born to smoking mothers. Biol. Neonate 85: 249–255.

    Article  PubMed  Google Scholar 

  • Bouckaert K.P., Slimani N., Nicolas G., Vignat J., Wright A.J., Roc M., Witthoft C.M. & Finglas P.M. 2011. Critical evaluation of folate data in European and international databases: recommendations for standardization in international nutritional studies. Mol. Nutr. Food Res. 55: 166–180.

    Article  CAS  PubMed  Google Scholar 

  • Canfield M.A., Collins J.S., Botto L.D., Williams L.J., Mai C.T., Kirby R.S., Pearson K., Devine O. & Mulinare J. 2005. National Birth Defects Prevention Network: changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: findings from a multi-state population-based study. Birth Defects Res. A Clin. Mol. Teratol. 73: 679–689.

    Article  CAS  PubMed  Google Scholar 

  • Capra L., Tezza G., Mazzei F. & Boner A.L. 2013. The origins of health and disease: the influence of maternal diseases and lifestyle during gestation. Ital. J. Pediatr. 39: 1–12.

    Article  Google Scholar 

  • Coppede F., Grossi E., Migheli F. & Migliore L. 2010. Polymorphisms in folate-metabolizing genes, chromosome damage, and risk of Down syndrome in Italian women: identification of key factors using artificial neural networks. BMC Med. Genomics 3: 42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deb R., Arora J., Yaiphaba M., Gupta S., Verma V., Saraswathy N., Saran S. & Kalla A.K. 2011. Folate supplementation, MTHFR gene polymorphism and neural tube defects: a community based case control study in North India. Metab. Brain Dis. 26: 241–246.

    Article  CAS  PubMed  Google Scholar 

  • D-A-CH (Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung). 2013. Referenzwerte für die Nährstoffzufuhr; http://www.dge.de/ (accessed 18.8.2014).

    Google Scholar 

  • Glader B. 2007. Anemias of inadequate production, pp. 2006–2017. In: Kliegman R.M. (ed.) Nelson Textbook of Pediatrics, Elsevier, Philadelphia.

    Google Scholar 

  • Grosse S.D. & Collins J.S. 2007. Folic acid supplementation and neural tube defect recurrence prevention. Birth Defects Res. A Clin. Mol. Teratol. 79: 737–742.

    Article  CAS  PubMed  Google Scholar 

  • Guardamagna O., Abello F., Cagliero P. & Lughetti L. 2012. Impact of nutrition since early life on cardiovascular prevention. Ital. J. Pediatr. 38: 1–10.

    Article  Google Scholar 

  • Gupta H. & Gupta P. 2004. Neural tube defects and folic acid. Indian Pediatr. 41: 577–586.

    PubMed  Google Scholar 

  • Hay G., Johnston C., Whitelaw A., Trygg K. & Refsum H. 2008. Folate and cobalamin status in relation to breastfeeding and weaning in healthy infants. Am. J. Clin. Nutr. 88: 105–114.

    CAS  PubMed  Google Scholar 

  • Hoffbrand A.V. & Weir D.G. 2001. Historical review. The history of folic acid. Br. J. Haematol. 113: 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Hossein-nezhad A., Mirzaei K., Maghbooli Z., Najmafshar A. & Larijani B. 2011. The influence of folic acid supplementation on maternal and fetal bone turnover. J. Bone Miner. Metab. 29: 186–192.

    Article  CAS  PubMed  Google Scholar 

  • Hoyo C., Murtha A.P., Schildkraut J.M., Forman M.R., Calingaert B., Demark-Wahnefried W., Kurtzberg J., Jirtle R.L. & Murphy S.K. 2011. Folic acid supplementation before and during pregnancy in the Newborn Epigenetics Study (NEST). BMC Public Health 11: 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Institute of Medicine, Food and Nutrition Board. 1998. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. A report of the Institute of Medicine (US) Standing Committee on the scientific evaluation of dietary reference intakes and its panel on folate, other B vitamins, and choline and subcommittee on upper reference levels of nutrients. National Academy Press, Washington, DC, 592 pp.

    Google Scholar 

  • Jackson A. 2006. Folate and Disease Prevention. TSO, London, 211 pp.

    Google Scholar 

  • Jyothi S., Misra I., Morris G., Benton A., Griffin D. & Allen S. 2007. Red cell folate and plasma homocysteine in preterm infants. Neonatology 92: 264–268.

    Article  CAS  PubMed  Google Scholar 

  • Kajaba I., Šimončič R., Ginter E., Ondrejka J., Trusková I., Kaláč J. & Bzdúch V. 1997. Recommended nutritional doses for population of Slovak republic — valid from 1997; http://www.jedalne.sk/sk/public/tabulka1.pdf (accessed 31.12.2010).

    Google Scholar 

  • Kim K.C., Friso S. & Choi S.W. 2009. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J. Nutr. Biochem. 20: 917–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matherly L.H. & Goldman D.I. 2003. Membrane transport of folates. Vitam. Horm. 66: 403–356.

    Article  CAS  PubMed  Google Scholar 

  • Melenovsky V., Stulc T., Kozich V., Grauova B., Krijt J., Wichterle D., Haas T., Malik J., Hradec J. & Ceska R. 2003. Effect of folic acid on fenofibrate-induced elevation of homocysteine and cysteine. Am. Heart J. 146: 1–6.

    Article  Google Scholar 

  • Peroni D.G., Bonomo B., Casarotto S., Boner L. & Piacentini G.L. 2012. How changes in nutrition have influenced the development of allergic diseases in childhood. Ital. J. Pediatr. 38: 1–7.

    Article  Google Scholar 

  • Poretti A., Anheier T., Zimmermann R., Boltshauser E. & Swiss Pediatric Surveillance Unit 2008. Neural tube defects in Switzerland from 2001 to 2007: are periconceptual folic acid recommendations being followed? Swiss Med. Wkly. 138: 608–613.

    PubMed  Google Scholar 

  • Raza M.Z., Sheikh A., Ahmed S.S., Ali S. & Naqvi S.M.A. 2012. Risk factors associated with birth defects at a tertiary care center in Pakistan. Ital. J. Pediatr. 38: 1–7.

    Article  Google Scholar 

  • Relton C.L., Pearce M.S. & Parker L. 2005. The influence of erythrocyte folate and serum vitamin B12 status on birth weight. Br. J. Nutr. 93: 593–599.

    Article  CAS  PubMed  Google Scholar 

  • Rondo P.H. & Tomkins A.M. 2000. Folate and intrauterine growth retardation. Ann. Trop. Paediatr. 20: 253–258.

    CAS  PubMed  Google Scholar 

  • Sachdev H.P.S. 2012. Overcoming challenges to accelerating linear growth in Indian children. Indian Pediatr. 49: 271–275.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney M.R., Staines A., Daly L., Traynor A., Daly S., Bailey S.W., Alverson P.B., Ayling J.E. & Scott J.M. 2009. Persistent circulating unmetabolised folic acid in a setting of liberal voluntary folic acid fortification. Implications for further mandatory fortification? BMC Public Health. 9: 295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ujházy E., Dubovicky M. & Mach M. 2014. Teratológia: princípy a hodnotenie abnormálneho vyvinu. SETOX, Bratislava, 182 pp.

    Google Scholar 

  • van Beynum I.M., Heijer M., Thomas C.M.G., Afman L. & Emmerzaal D.O. 2005. Total homocysteine and its predictors in Dutch children. Am. J. Clin. Nutr. 81: 1110–1116.

    PubMed  Google Scholar 

  • van der Linden I.J., Afman L.A., Heil S.G. & Blom H.J. 2006. Genetic variation in genes of folate metabolism and neuraltube defect risk. Proc. Nutr. Soc. 65: 204–215.

    Article  PubMed  Google Scholar 

  • WHO. 2012. Guidelines. Daily iron and folic acid supplementation in pregnant woman. World Health Organization, Geneva, 32 pp.

    Google Scholar 

  • Wilcox A.J., Lie R.T., Solvoll K., Taylor J., McConnaughey D.R., Åbyholm F., Vindenes H., Vollset S.E. & Drevon C.A. 2007. Folic acid supplements and risk of facial clefts: national population based case-control study. BMJ. 334: 464.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zemlin A.E., Essack Y., Rensburg M., Keller T. & Krinkmann T. 2010. Stability of red blood cell folate in whole blood and haemolysate. Clin. Lab. 56: 391–396.

    CAS  PubMed  Google Scholar 

  • Zhu L. & Ling H. 2009. National neural tube defects prevention program in China. Food Nutr. Bull. 29: 196–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana Reváková or Ingrid Brucknerová.

Additional information

Electronic supplementary material. The online version of this article (DOI:10.2478/s11756-014-0482-5) contains supplementary material, which is available to authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reváková, T., Vasilenková, A., Behúlová, D. et al. Red blood cell folate concentrations in term newborns: recent findings in the Slovak Republic. Biologia 69, 1784–1789 (2014). https://doi.org/10.2478/s11756-014-0482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0482-5

Key words

Navigation