Skip to main content
Log in

Influence of density and predators on metamorphic size in Rhinella schneideri tadpoles raised in mesocosm conditions

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Amphibians exhibit extreme plasticity in the timing of metamorphosis, and several species respond to water availability, accelerating metamorphosis when their ponds dry. We analyzed the plasticity of the developmental response to water volume in Rhinella schneideri tadpoles. We raised tadpoles in mesocosm. Covariation between body size at metamorphosis and timing of development was positive. Nevertheless, the first approximately 53% of the metamorphoses finishing the cycle required between 34 and 56 days, and the covariation between body size at metamorphosis and timing of development was negative. For these tadpoles, the larval density and the presence of predators did not significantly affect their mass to metamorphosis. Nevertheless, predators affected time to metamorphosis. For the remainder of the tadpoles that reached metamorphosis at > 56 days, the relationship between body size at metamorphosis and timing of development was positive. For these tadpoles, larval density was important for mass at metamorphosis and presence of predators was also important for time to metamorphosis. Two dominant features were observed: (i) approximately 53% of metamorphs had morphological features similar to individuals developing in desiccating ponds, and (ii) the other individuals had morphological characteristics comparable to metamorphs developing in an unchanging environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson A.R. & Petranka J.W. 2003. Odonate predator does not affect hatching time or morphology of embryos of two amphibians. J. Herpetol. 37(1): 65–71. DOI: 10.1670/0022-1511(2003)037[0065:OPDNAH]2.0.CO;2

    Article  Google Scholar 

  • Babbit K.J. 2001. Beaviour and growth of southern leopard frog (Rana sphenocephala) tadpoles: effects of food and predation risk. Can. J. Zool. 79(5): 809–814. DOI: 10.1139/z01-040

    Article  Google Scholar 

  • Benard M.F. 2004. Predator-induced phenotypic plasticity in organism with complex life cycles. Annu. Rev. Ecol. Evol. Syst. 35(2004): 651–673. DOI: 10.1146/annurev.ecolsys.35.021004.112426

    Article  Google Scholar 

  • Berven K.A. 1990. Factors affecting populations fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71: 1599–1608. DOI: http://dx.doi.org/10.2307/1938295

    Article  Google Scholar 

  • Bolnick D.I. & Preisser E.L. 2005. Resource competition modifies the strength of trait-mediated predator-prey interactions: a meta-analysis. Ecology 86: 2771–2779. DOI: http://dx.doi.org/10.1890/04-1249

    Article  Google Scholar 

  • Fusco G. & Minelli A. 2010. Phenotipic plasticity in developmental and evolution: facts and concepts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1540): 547–556. DOI: 10.1098/rstb.2009.0267

    Article  PubMed Central  PubMed  Google Scholar 

  • Gabriel W. 1999. Evolution of reversible plastic responses: inducible defenses and environmental tolerance, pp. 286–305. In: Tollrian R. & Harvell D. (eds), The Ecology and Evolution of Inducible Defenses, Princeton University Press, Princeton, New Jersey, 395 pp. ISBN: 9780691004945

    Google Scholar 

  • Gómez V.I. 2012. Respuestas fenotípicas en larvas de anuros a situaciones cambiantes en los factores bióticos y abióticos. Tesis Doctoral, Universidad Nacional de La Plata, Facultad de Ciencias Naturales Museo, 194 pp.

    Google Scholar 

  • Gómez V.I. & Kehr A.I. 2011a. Morphological and developmental responses of anuran larvae (Physalaemus albonotatus) to chemical cues from the predators Moenkhausia dichoroura (Characiformes: Characidae) and Belostoma elongatum (Hemiptera: Belostomatidae). Zool. Stud. 50(2): 203–210.

    Google Scholar 

  • Gómez V.I. & Kehr A.I. 2011b. Morphological and developmental plasticity in larvae of Physalaemus santafecinus (Anura: Leiuperidae) in response to chemical cues of different predators. Phyllomedusa: J. Herpetol. 10(2): 143–151. DOI: http://dx.doi.org/10.11606/issn.2316-9079.v10i2p143-151

    Article  Google Scholar 

  • Gómez V.I. & Kehr A.I. 2012. Effects of predator fish and water bugs on morphology and development of tadpoles of Elachistocleis bicolor (Anura: Microhylidae). Biologia 67(5): 1001–1006. DOI: 10.2478/s11756-012-0082-1

    Article  Google Scholar 

  • Gosner K.L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16(3): 183–190.

    Google Scholar 

  • Griffiths R. A. 1991. Competition between common frog, Rana temporaria, and natterjack toad, Bufo calamita, tadpoles: the effect of competitor density and interaction level on tadpole development. Oikos 61(2): 187–196.

    Article  Google Scholar 

  • Jara F.G. & Perotti M.G. 2009. Tadpoles responses to predation risk. Ontogenetic change between constitutive and inducible defenses. J. Herpetol. 43(1): 82–88. DOI: http://dx.doi.org/10.1670/07-229R2.1

    Article  Google Scholar 

  • Kehr A.I. 1989. Factores dependientes de la densidad y su influencia sobre el crecimiento individual de los estados larvales de Hyla pulchella pulchella (Amphibia:Anura). Limnobios 2: 757–761.

    Google Scholar 

  • Kehr A.I. 1994. Patrones de dispersión espacio-temporales y su influencia en la biología larval de Bufo arenarum (Amphibia: Anura). Neotrópica 40: 35–40.

    Google Scholar 

  • Kehr A.I. 1997. Stage-frequency and habitat selection of a cohort of Pseudacris ocularis tadpoles (Hylidae: Anura) in a Florida temporary pond. Herpetol. J. 7(3): 103–109.

    Google Scholar 

  • Kehr A.I. & Marangoni F. 1999. Variación intrapoblacional en el crecimiento y tamańo en la metamorfosis de Bufo paracnemis, bajo condiciones naturales. Neotrópica 45: 63–68.

    Google Scholar 

  • Kingsolver J.G. 1995. Fitness consequences of seasonal polyphenism in western white butterflies. Evolution 49(5): 942–954

    Article  Google Scholar 

  • Loman J. 2004. Density regulation in tadpoles of Rana temporaria: a full pond field experiment. Ecology 85(6): 1611–1618.

    Article  Google Scholar 

  • Maciel T.A. & Juncá F.A. 2009. Effects of temperature and volume of water on the growth and development of tadpoles of Pleurderma diplolister and Rhinella granulosa (Amphibia: Anura). Zoologia 26(3): 413–418.

    Article  Google Scholar 

  • Newman R.A. 1988. Adaptive plasticity in development of Scaphiopus couchii tadpoles in desert ponds. Evolution 42(4): 774–783.

    Article  Google Scholar 

  • Peacor S.D. 2002. Positive effects of predators on prey growth rate through induced modifications of prey behavior. Ecol. Lett. 5(1): 77–85. DOI: 10.1046/j.1461-0248.2002.00287.x

    Article  Google Scholar 

  • Petranka J.W. & Hayes L. 1998. Chemically mediated avoidance of a predatory odonate (Anax junius) by American toad (Bufo americanus) and wood frog (Rana sylvatica) tadpoles. Behav. Ecol. Soc. 42(4): 263–271. DOI: 10.1007/s002650050438

    Article  Google Scholar 

  • Pfennig D.W., Mabry A. & Orange D. 1991. Environmental causes of correlations between age and size at metamorphosis in Scaphiopus multiplicatus. Ecology 72: 2240–2248. DOI: http://dx.doi.org/10.2307/1941574

    Article  Google Scholar 

  • Relyea R.A. 2002. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predators induced plasticity. Ecol. Monogr. 72(4): 523–540. DOI: 10.2307/3100055

    Article  Google Scholar 

  • Relyea R.A. 2003. How prey respond to combined predators: a review and an empirical test. Ecology 84(7): 1827–1839. DOI: http://dx.doi.org/10.1890/0012-9658(2003)084[1827:HPRTCP]2.0.CO;2

    Article  Google Scholar 

  • Relyea R.A. 2004. Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85: 172–179. DOI: http://dx.doi.org/10.1890/03-0169

    Article  Google Scholar 

  • Relyea R.A. 2007. Getting out alive: how predators affect the decision to metamorphose. Oecologia 152(3): 389–400. DOI: 10.1007/s00442-007-0675-5

    Article  PubMed  Google Scholar 

  • Relyea R.A. & Werner E.E. 1999. Quantifying the relation between predator-induced behavioral responses and growth performance in larval anurans. Ecology 80(6): 2117–2124. DOI: http://dx.doi.org/10.1890/0012-9658(1999)080[2117:QTRBPI]2.0.CO;2

    Article  Google Scholar 

  • Reques R. & Tejedo M. 1995. Negative correlation between length of larval period and metamorphic size in natural populations in natural populations of natterjack toads (Bufo calamita). J. Herpetol. 29: 311–314.

    Article  Google Scholar 

  • Richter-Boix A., Tejedo M. & Rezende E. 2011. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecol. Evol. 1(1): 15–25. DOI: 10.1002/ece3.2

    Article  PubMed Central  PubMed  Google Scholar 

  • Skelly D.K. 1995. Competition and the distribution of spring peeper larvae. Oecologia 103(2): 203–207. DOI: 10.1007/BF00329081

    Article  Google Scholar 

  • Tejedo M. & Reques R. 1992. Effects of egg size and density on metamorphic traits in tadpoles of the natterjack toad (Bufo calamita). J. Herpetol. 26: 146–152.

    Article  Google Scholar 

  • Tejedo M. & Reques R. 1994. Does larval growth history determine timing of metamorphosis in anurans? A field experiment. Herpetologica 50(2): 113–118.

    Google Scholar 

  • Teplitsky C. & Laurila A. 2007. Flexible defense strategies: competition modifies investment in behavioral vs. morphological defenses. Ecology 88(7): 1641–1646. PMID: 17645010

    Article  PubMed  Google Scholar 

  • Tollrian R. & Harvell D. (eds) 1999. The Ecology and Evolution of Inducible Defences. Princeton University Press, Princeton, New Jersey, 395 pp. ISBN: 9780691004945

    Google Scholar 

  • Travis J. 1984. Anuran size at metamorphosis: Experimental test of a model based on intraspecific competition. Ecology 65: 1155–1160. DOI: http://dx.doi.org/10.2307/1938323

    Article  Google Scholar 

  • Van Buskirk J. & Relyea R.A. 1998. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65(3): 301–328. DOI: 10.1111/j.1095-8312.1998.tb01144.x

    Article  Google Scholar 

  • Warner S.C., Dunson W.A. & Travis J. 1991. Interaction of pH, density, and priority effects on the survivorship and growth of two species of hylid tadpoles. Oecologia 88(3): 331–339. DOI: 10.1007/BF00317575

    Article  Google Scholar 

  • Wassersug R.J. 1975. The adaptive significance of the tadpole stage with comments on the maintenance of complex life cycles in anurans. Am. Zool. 15(2): 405–417. DOI: 10.1093/icb/15.2.405

    Google Scholar 

  • Werner E.E. & Peacor S.D. 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology 84(5): 1083–1100. DOI: http://dx.doi.org/10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2

    Article  Google Scholar 

  • West-Eberhard M.J. 1989. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20: 249–278. DOI: 10.1146/annurev.es.20.110189.001341

    Article  Google Scholar 

  • Wilbur H.M. 1980. Complex life cycles. Annu. Rev. Ecol. Syst. 11: 67–93. DOI: 10.1146/annurev.es.11.110180.000435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo I. Kehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kehr, A.I., Gómez, V.I. Influence of density and predators on metamorphic size in Rhinella schneideri tadpoles raised in mesocosm conditions. Biologia 69, 1417–1424 (2014). https://doi.org/10.2478/s11756-014-0438-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0438-9

Key words

Navigation