Skip to main content

Advertisement

Log in

Growth and morphological studies of NiO/CuO/ZnO based nanostructured thin films for photovoltaic applications

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

At present, inorganic semiconducting materials are the most economical and viable source for the renewable energy industry. The present work deals with the morphological and optical characterization of copper oxide (CuO) and zinc oxide (ZnO) thin films fabricated by layer by layer deposition on nickel oxide (NiO) coated indium tin oxide (ITO) glass by solution processing methods, mainly chemical bath deposition (CBD) and hydrothermal deposition (HTD) processes at room temperature. As a whole, the above inorganic composite materials (NiO/CuO/ZnO) can be applied in photovoltaic cells. An attempt has been made to study structural, morphological and absorption characteristics of NiO/CuO/ZnO heterojunction using state of the art techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV spectroscopy. The energy band gaps of CuO and ZnO have also been calculated and discussed based on the UV spectroscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai, G. F., Tu, J. P., Zhang, J., Mai, Y. J., Lu, Y., Gu, C. D., & Wang, X. L. (2012). An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale, 4, 5724–5730. DOI: 10.1039/c2nr31397a.

    Article  CAS  Google Scholar 

  • Cao, L. Y., Park, J. S., Fan, P. Y., Clemens B., & Brongersma, M. L. (2010). Resonant germanium nanoantenna photodetectors. Nano Letters, 10, 1229–1233. DOI: 10.1021/nl9037278.

    Article  CAS  Google Scholar 

  • Chen, L. C., Huang, C. M., Gao, C. S., Wang, G. W., & Hsiao, M. C. (2011). A comparative study of the effects of In2O3 and SnO2 modification on the photocatalytic activity and characteristics of TiO2. Chemical Engineering Journal, 175, 49–55. DOI:10.1016/j.cej.2011.09.032.

    Article  CAS  Google Scholar 

  • Dandeneau, C. S., Jeon, Y. H., Shelton, C. T., Plant, T. K., Cann, D. P., & Gibbons, B. J. (2009). Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films, 517, 4448–4454. DOI:10.1016/j.tsf.2009.01.054.

    Article  CAS  Google Scholar 

  • Dar, M. A., Ahsanulhaq, Q., Kim, Y. S., Sohn, J. M., Kim, W. B., & Shin, H. S. (2009). Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydro-thermal method; structural properties and growth mechanism. Applied Surface Science, 255, 6279–6284. DOI:10.1016/j.apsusc.2009.02.002.

    Article  CAS  Google Scholar 

  • Dimopoulos, T., Peić, A., Müllner, P., Neuschitzer, M., Resel, R., Abermann, S., Postl, M., List, E. J. W., Yakunin, S., Heiss, W., & Brückl, H. (2013). Photovoltaic properties of thin film heterojunctions with cupric oxide absorber. Journal of Renewable and Sustainable Energy, 5, 011205. DOI: 10.1063/1.4791779.

    Article  Google Scholar 

  • Gan, Y., Gu, F. B., Han, D. M., Wang, Z. H., & Guo, G. S. (2010). Biomimetic synthesis of zinc oxide 3D architectures with gelatin as matrix. Journal of Nanomaterials, 2010, 289173. DOI:10.1155/2010/289173.

    Article  Google Scholar 

  • Ghosh, T., Dutta, M., Mridha, S., & Basak, D. (2009). Effect of Cu doping in the structural, electrical, optical, and optoelectronic properties of sol-gel ZnO thin films. Journal of the Electrochemical Society, 156(4), H285–H289. DOI: 10.1149/1.3079619.

    Article  CAS  Google Scholar 

  • Green, M. A. (2001). Third generation photovoltaics: Ultrahigh conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications, 9, 123–135. DOI: 10.1002/pip.360.

    Article  CAS  Google Scholar 

  • Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., Somorjai, G., & Yang, P. D. (2005). General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 5, 1231–1236. DOI: 10.1021/nl050788p.

    Article  CAS  Google Scholar 

  • Han, S. Y., Lee, D. H., Chang, Y. J., Ryu, S. O., Lee, T. J., & Chang, C. H. (2006). The growth mechanism of nickel oxide thin films by room-temperature chemical bath deposition. Journal of the Electrochemical Society, 153(6), C382–C386. DOI:10.1149/1.2186767.

    Article  CAS  Google Scholar 

  • Hochbaum, A. I., & Yang, P. D. (2010). Semiconductor nanowires for energy conversion. Chemical Reviews, 110, 527–546. DOI: 10.1021/cr900075v.

    Article  CAS  Google Scholar 

  • Herion, J., Niekisch, E. A., & Scharl, G. (1980). Investigation of metal oxide/cuprous oxide heterojunction solar cells. Solar Energy Materials, 4, 101–112. DOI: 10.1016/0165-1633(80)90022-2.

    Article  CAS  Google Scholar 

  • Hsueh, H. T., Chang, S. J., Weng, W. Y., & Hsu, C. L. (2011a). Fabrication and characterization of coaxial p-copper oxide/n-ZnO nanowire photodiodes. IEEE Transactions on Nanotechnology, 11, 127–133. DOI:10.1109/tnano.2011.2159620.

    Article  Google Scholar 

  • Hsueh, H. T., Hsueh, T. J., Chang, S. J., Hung, F. Y., Tsai, T. Y., Weng, W. Y., Hsu, C. L., & Dai, B. T. (2011b). CuO nanowire-based humidity sensors prepared on glass substrate. Sensors and Actuators B: Chemical, 156, 906–911. DOI:10.1016/j.snb.2011.03.004.

    Article  CAS  Google Scholar 

  • Izaki, M., Mizuno, K. T., Shinagawa, T., Inaba, M., & Tasaka, A. (2006). Photochemical construction of photovoltaic device composed of p-copper(I) oxide and n-zinc oxide. Journal of the Electrochemical Society, 153(9), C668–C672. DOI:10.1149/1.2218791.

    Article  CAS  Google Scholar 

  • Izaki, M., Shinagawa, T., Mizuno, K. T., Ida, Y., Inaba, M., & Tasaka, A. (2007). Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. Journal of Physics D: Applied Physics, 40, 3326–3329. DOI: 10.1088/0022-3727/40/11/010.

    Article  CAS  Google Scholar 

  • Kanmani, S. S., Ramachandran, K., & Umapathy, S. (2012). Eosin yellowish dye-sensitized ZnO nanostructure-based solar cells employing solid PEO redox couple electrolyte. International Journal of Photoenergy, 2012, 267824. DOI:10.1155/2012/267824.

    Article  Google Scholar 

  • Karthikeyan, B., Pandiyarajan, T., & Mangaiyarkarasi, K. (2011). Optical properties of sol-gel synthesized calcium doped ZnO nanostructures. Spectrochimica Acta: Molecular and Biomolecular Spectroscopy, 82, 97–101. DOI:10.1016/j.saa.2011.07.005.

    Article  CAS  Google Scholar 

  • Kidowaki, H., Oku, T., & Akiyama, T. (2012). Fabrication and evaluation of CuO/ZnO heterostructures for photoelectric conversion. International Journal of Research and Reviews in Applied Sciences, 13, 67–72.

    CAS  Google Scholar 

  • Li, J. P., Sun, F. Q., Gu, K. Y., Wu, T. X., Zhai, W., Li, W. S., & Huang, S. F. (2011). Preparation of spindly CuO microparticles for photodegradation of dye pollutants under a halogen tungsten lamp. Applied Catalysis A: General, 406, 51–58. DOI:10.1016/j.apcata.2011.08.007.

    Article  CAS  Google Scholar 

  • Liu, H. L., Yang, J. H., Hua, Z., Zhang, Y. J., Yang, L. L., Xiao, L., & Xie, Z. (2010). The structure and magnetic properties of Cu-doped ZnO prepared by sol-gel method. Applied Surface Science, 256, 4162–4165. DOI:10.1016/j.apsusc.2010.01.118.

    Article  CAS  Google Scholar 

  • Mittiga, A., Salza, E., Sarto, F., Tucci, M., & Vasanthi, R. (2006). Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Applied Physics Letters, 88, 163502. DOI:10.1063/1.2194315.

    Article  Google Scholar 

  • Motoyoshi, R., Oku, T., Kidowaki, H., Suzuki, A., Kikuchi, K., Kikuchi, S., & Jeyadevan, B. (2010). Structure and photovoltaic activity of cupric oxide-based thin film solar cells. Journal of the Ceramic Society of Japan, 118, 1021–1023. DOI: 10.2109/jcersj2.118.1021.

    Article  CAS  Google Scholar 

  • Na, H. G., Kwak, D. S., & Kim, H. W. (2012). Structural, Raman, and photoluminescence properties of doubleshelled coaxial nanocables of In2O3 core with ZnO and AZO shells. Crystal Research and Technology, 47, 79–86. DOI:10.1002/crat.201100430.

    Article  CAS  Google Scholar 

  • Olsen, L. C., Bohara, R. C., & Urie, M. W. (1979). Explanation for low-efficiency Cu2O Schottky-barrier solar cells. Applied Physics Letters, 34, 47–49. DOI: 10.1063/1.90593.

    Article  CAS  Google Scholar 

  • Patil, U. M, Salunkhe, R. R, Gurav, K. V., & Lokhande, C. D. (2008). Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Applied Surface Science, 255, 2603–2607. DOI:10.1016/j.apsusc.2008.07.192.

    Article  CAS  Google Scholar 

  • Pradhan, D., Sindhwani, S., & Leung, K. T. (2010). Parametric study on dimensional control of ZnO nanowalls and nanowires by electrochemical deposition. Nanoscale Research Letters, 5, 1727–1736. DOI: 10.1007/s11671-010-9702-2.

    Article  CAS  Google Scholar 

  • Pramanik, P., & Bhattacharya, S. (1990). A chemical method for the deposition of nickel oxide thin films. Journal of the Electrochemical Society, 137, 3869–3870. DOI: 10.1149/1.2086316.

    Article  CAS  Google Scholar 

  • Qin, H. W., Zhang, Z. L., Liu, X., Zhang, Y. J., & Hu, J. F. (2010). Room-temperature ferromagnetism in CuO sol-gel powders and films. Journal of Magnetism and Magnetic Materials, 322, 1994–1998. DOI:10.1016/j.jmmm.2010.01.021.

    Article  CAS  Google Scholar 

  • Umar, A., & Hahn, Y. B. (2006). ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology, 17, 2174–2180. DOI: 10.1088/0957-4484/17/9/016.

    Article  CAS  Google Scholar 

  • Vinodkumar, R., Letthy, K. J., Beena, D., Detty, A. P., Navas, I., Nayar, U. V., Mahadevan Pillai, V. P., Ganesan, V., & Reddy, V. R. (2010). Effect of ITO buffer layers on the structural, optical and electrical properties of ZnO multilayer thin films prepared by pulsed laser deposition technique. Solar Energy Materials and Solar Cells, 94, 68–74. DOI:10.1016/j.solmat.2009.02.017.

    Article  CAS  Google Scholar 

  • Wang, J. Z., Du, N., Zhang, H., Yu, J. X., & Yang, D. (2011a). Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. The Journal of Physical Chemistry C, 115, 11302–11305. DOI: 10.1021/jp203168p.

    Article  CAS  Google Scholar 

  • Wang, J. X., Sun, X. W., Yang, Y., Kyaw, K. K. A., Huang, X. Y., Yin, J. Z., Wei, J., & Demir, H. V. (2011b). Freestanding ZnO-CuO composite nanowire array films and their gas sensing properties. Nanotechnology, 22, 325704. DOI: 10.1088/0957-4484/22/32/325704.

    Article  CAS  Google Scholar 

  • Xia, X. H., Tu, J. P., Zhang, J., Wang, X. L., Zhang, W. K., & Huang, H. (2008). Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochimica Acta, 53, 5721–5724. DOI:10.1016/j.electacta.2008.03.047.

    Article  CAS  Google Scholar 

  • Xiang, J., Lu, W., Hu, Y. J., Wu, Y., Yan, H., & Lieber, C. M. (2006). Ge/Si nanowire heterostructures as highperformance field-effect transistors. Nature, 441, 489–493. DOI: 10.1038/nature04796.

    Article  CAS  Google Scholar 

  • Xu, Y. Y., Chen, D. R., & Jiao, X. L. (2005). Fabrication of CuO pricky microspheres with tunable size by a simple solution route. The Journal of Physical Chemistry B, 109, 13561–13566. DOI: 10.1021/jp051577b.

    Article  CAS  Google Scholar 

  • Yu, H. G., Yu, J. G., Liu, S. W., & Mann, S. (2007). Templatefree hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chemistry of Materials, 19, 4327–4334. DOI: 10.1021/cm070386d.

    Article  CAS  Google Scholar 

  • Zainelabdin, A., Zaman, S., Amin, G., Nur, O., & Willander, M. (2010). Deposition of well-aligned ZnO nanorods at 50°C on metal, semiconducting polymer, and copper oxides substrates and their structural and optical properties. Crystal Growth & Design, 10, 3250–3256. DOI: 10.1021/cg100390x.

    Article  CAS  Google Scholar 

  • Zhang, Q. B., Zhang, K. L., Xu, D. G., Yang, G. C., Huang, Y. H., Nie, F. D., Liu, C. M., & Yang, S. H. (2014). CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 60, 208–337. DOI:10.1016/j.pmatsci.2013.09.003.

    Article  CAS  Google Scholar 

  • Zhou, X. F, Hu, Z. L., Fan, Y. Q., Chen, S., Ding, W. P., & Xu, N. P. (2008). Microspheric organization of multilayered ZnO nanosheets with hierarchically porous structures. The Journal of Physical Chemistry C, 112, 11722–11728. DOI: 10.1021/jp802619j.

    Article  CAS  Google Scholar 

  • Zou, C. W., Wang, J., Liang, F., Xie, W., Shao, L. X., & Fu, D. J. (2012). Large-area aligned CuO nanowires arrays: Synthesis, anomalous ferromagnetic and CO gas sensing properties. Current Applied Physics, 12, 1349–1354. DOI:10.1016/j.cap.2012.03.025.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S., Mudigere, M., Krishnamurthy, L. et al. Growth and morphological studies of NiO/CuO/ZnO based nanostructured thin films for photovoltaic applications. Chem. Pap. 68, 1584–1592 (2014). https://doi.org/10.2478/s11696-014-0596-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0596-9

Keywords

Navigation