Skip to main content
Log in

Modelling of ORL1 receptor-ligand interactions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An opioid receptor like (ORL1) receptor is one of a family of G-protein-coupled receptors (GPCR); it represents a new pharmaceutical target with extensive therapeutic potential for the regulation of important biological functions such as nociception, mood disorders, drug abuse, learning or cardiovascular control. Although the crystal structure of the inactive form of the ORL1 receptor has been determined, little is known about its activation. By using X-ray structures of the β2-adrenegic receptor in its inactive (2RH1) and active (3P0G) states as templates, inactive and active homology models of the ORL1 receptor were constructed. Structurally diverse sets of strongly binding antagonists and agonists were docked with both ORL1 receptor forms. The major receptor-ligand interactions responsible for antagonist and agonist binding were identified. Although both sets of ligands, agonists and antagonists, bind to the same region of the receptor, they occupy partially different binding pockets. Agonists bind to the inactive receptor in a slightly different manner than antagonists. This difference is more pronounced in binding to the active ORL1 receptor model and points to the amino acids at the extracellular end of TM6, suggesting that this region is important for receptor-activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accelrys Software (2005). Insight II [computer software]. San Diego, CA, USA: Accelrys Software.

    Google Scholar 

  • Audet, M., & Bouvier, M. (2008). Insights into signaling from the β2-adrenergic receptor structure. Nature Chemical Biology, 4, 397–403. DOI: 10.1038/nchembio.97.

    Article  CAS  Google Scholar 

  • Avogadro (2013). An open-source molecular builder and visualization tool, version 1.0.0. [computer software]. Retrieved on October 7, 2013 from: http://avogadro.Openmolecules.net/

    Google Scholar 

  • Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G-proteincoupled receptors. Methods in Neurosciences, 25, 366–428. DOI: 10.1016/s1043-9471(05)80049-7.

    Article  CAS  Google Scholar 

  • Bigoni, R., Rizzi, D., Rizzi, A., Camarda, V., Guerrini, R., Lambert, D. G., Hashiba, E., Berger, H., Salvadori, S., Regoli, D., & Calo’, G. (2002). Pharmacological characterization of [(pX)Phe4]nociceptin(1–13)amide analogues. Naunyn-Schmiedeberg’s Archives of Pharmacology, 365, 442–449. DOI: 10.1007/s00210-002-0548-8.

    Article  CAS  Google Scholar 

  • Bröer, B. M., Gurrath, M., & Höltje, H. D. (2003). Molecular modelling studies on the ORL1-receptor and ORL1-agonists. Journal of Computer-Aided Molecular Design, 17, 739–754. DOI: 10.1023/b:jcam.0000017491.97244.69.

    Article  Google Scholar 

  • Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G. F., Thian, F. S., Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K., & Stevens, R. C. (2007). High-resolution crystal structure of an engineered human β2-adrenergic G-protein-coupled receptor. Science, 318, 1258–1265. DOI: 10.1126/science.1150577.

    Article  CAS  Google Scholar 

  • Daga, P. R., & Zaveri, N. T. (2012). Homology modeling and molecular dynamics simulations of the active state of the nociceptin receptor reveal new insights into agonist binding and activation. Proteins: Structure, Function, and Bioinformatics, 80, 1948–1961. DOI: 10.1002/prot.24077.

    CAS  Google Scholar 

  • Goujon, M., McWilliam, H., Li, W. H., Valentin, F., Squizzato, S., Paern, J., & Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Research, 38, W695–W699. DOI: 10.1093/nar/gkq313.

    Article  CAS  Google Scholar 

  • Guerrini, R., Calo’, G., Rizzi, A., Bianchi, C., Lazarus, L. H., Salvadori, S., Temussi, P. A., & Regoli, D. (1997). Address and message sequences for the nociceptin receptor: A structure-activity study of nociceptin-(1-13)-peptide amide. Journal of Medicinal Chemistry, 40, 1789–1793. DOI: 10.1021/jm970011b.

    Article  CAS  Google Scholar 

  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization and analysis platform. Journal of Cheminformatics, 4, 17. DOI: 10.1186/1758-2946-4-17.

    Article  CAS  Google Scholar 

  • Huang, X. Q., Jiang, H. L., Luo, X. M., Chen, K. X., Zhu, Y. C., Ji, R. Y., & Cao, Y. (2000). Comparative molecular modeling on 3D-structure of opioid receptor-like 1 receptor. Acta Pharmacologica Sinica, 21, 529–535.

    CAS  Google Scholar 

  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38. DOI: 10.1016/0263-7855(96)00018-5.

    Article  CAS  Google Scholar 

  • Isozaki, K., Okada, K., Koikawa, S., Nose, T., Costa, T., & Shimohigashi, Y. (2006). Residual roles of hydrophobic amino acids in the fifth transmembrane domain of ORL1 receptor in its activation. Peptide Science, 43, 11.

    Google Scholar 

  • Isozaki, K., Li, J. L., Okada, K., Nishimura, H., Matsushima, A., Nose, T., Costa, T., & Shimohigashi, Y. (2009). Spare interactions of highly potent [Arg14, Lys15] nociceptin for cooperative induction of ORL1 receptor activation. Bioorganic & Medicinal Chemistry, 17, 7904–7908. DOI: 10.1016/j.bmc.2009.10.026.

    Article  CAS  Google Scholar 

  • Lambert, D. G. (2008). The nociceptin/orphanin FQ receptor: A target with broad therapeutic potential. X. Nature Reviews: Drug Discovery, 7, 694–710. DOI: 10.1038/nrd2572.

    CAS  Google Scholar 

  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291. DOI: 10.1107/s0021889892009944.

    Article  CAS  Google Scholar 

  • Liu, M., He, L., Hu, X. P., Liu, P. Q., & Luo, H. B. (2010). 3D-QSAR, homology modeling and molecular docking studies on spiropiperidines analogues as agonists of nociceptin/orphanin FQ receptor. Bioorganic & Medicinal Chemistry Letters, 20, 7004–7010. DOI: 10.1016/j.bmcl.2010.09.116.

    Article  CAS  Google Scholar 

  • Meng, F., Taylor, L. P., Hoversten, M. T., Ueda, Y., Ardati, A., Reinscheid, R. K., Monsma, F. J., Watson, S. J., Civelli, O., & Akil, H. (1996). Moving from the orphanin FQ receptor to an opioid receptor using four point mutations. Journal of Biological Chemistry, 271, 32016–32020. DOI: 10.1074/jbc.271.50.32016.

    Article  CAS  Google Scholar 

  • Mollereau, C., Mouledous, L., Lapalu, S., Cambois, G., Moisand, C., Butour, J. L., & Meunier, J. C. (1999). Distinct mechanisms for activation of the opioid receptor-like 1 and κ-opioid receptors by nociceptin and dynorphin A. Molecular Pharmacology, 55, 324–331. DOI: 10.1124/mol.55.2.324.

    CAS  Google Scholar 

  • Momany, F. A., & Rone, R. (1992). Validation of the general purpose QUANTA ®3.2/CHARMm®force field. Journal of Computational Chemistry, 13, 888–900. DOI: 10.1002/jcc.54013074.

    Article  CAS  Google Scholar 

  • Moulédous, L., Topham, C. M., Moisand, C., Mollereau, C., & Meunier, J. C. (2000). Functional inactivation of the nociceptin receptor by alanine substitution of glutamine 286 at the C terminus of transmembrane segment VI: Evidence from a site-directed mutagenesis study of the ORL1 receptor transmembrane-binding domain. Molecular Pharmacology, 57, 495–502. DOI: 10.1124/mol.57.3.495.

    Google Scholar 

  • Mustazza, C., Borioni, A., Sestili, I., Sbraccia, M., Rodomonte, A., Farretti, R., & Del Giudice, M. R. (2006). Synthesis and evaluation as NOP ligands of some spiro[piperidine-4,2′(1′H)-quinazolin]-4′(3′H)-ones and spiro[piperidine-4,5′(6′H)-[1,2, 4]triazolo[1,5-c]quinazolines]. Chemical & Pharmaceutical Bulletin, 54, 611–622. DOI: 10.1248/cpb.54.611.

    Article  CAS  Google Scholar 

  • Okano, M., Mito, J., Maruyama, Y., Masuda, H., Niwa, T., Nakagawa, S., Nakamura, Y., & Matsuura, A. (2009). Discovery and structure-activity relationships of 4-aminoquinazoline derivatives, a novel class of opioid receptor like-1 (ORL1) antagonists. Bioorganic & Medicinal Chemistry, 17, 119–132. DOI: 10.1016/j.bmc.2008.11.012.

    Article  CAS  Google Scholar 

  • Philip, A. E., Poupaert, J. H., & McCurdy, C. R. (2005). Opioid receptor-like 1 (ORL1) molecular “Road Map” to understanding ligand interaction and selectivity. Current Topics in Medicinal Chemistry, 5, 325–340. DOI: 10.2174/1568026053544489.

    Article  CAS  Google Scholar 

  • Rasmussen, S. G. F., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., DeVree, B. T., Rosenbaum, D.M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I., & Kobilka, B. K. (2011). Structure of a nanobodystabilized active state of the β2-adrenoceptor. Nature, 469, 175–180. DOI: 10.1038/nature09648.

    Article  CAS  Google Scholar 

  • Riadi, G. (2006, June 21). Average structure and RMSD. Message posted on VMD-L mailing list, archived at http://www.ks.uiuc.edu/Research/vmd/mailinglist/vmd-l/7251.html

    Google Scholar 

  • Rosenbaum, D. M., Zhang, C., Lyons, J. A., Holl, R., Aragao, D., Arlow, D. A., Rasmussen, S. G. F., Choi, H. J., DeVree, B. T., Sunahara, R. K., Chae, P. S., Gellman, S. H., Dror, R. O., Shaw, D. E., Weis, W. I., Caffrey, M., Gmeiner, P., & Kobilka, B. K. (2011). Structure and function of an irreversible agonist-β2-adrenoceptor complex. Nature, 469, 236–240. DOI: 10.1038/nature09665.

    Article  CAS  Google Scholar 

  • Šali, A., & Blundell, T. L. (1993). Comparative protein modeling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779–815. DOI: 10.1006/jmbi.1993.1626.

    Article  Google Scholar 

  • Schmidt, M. W., Baldridge, K. K., Boatz, L. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., & Montgomery, J. A. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363. DOI: 10.1002/jcc.540141112.

    Article  CAS  Google Scholar 

  • Schneider, M., Wolf, S., Schlitter, J., & Gerwert, K. (2011). The structure of active opsin as a basis for identification of GPCR agonists by dynamic homology modelling and virtual screening assays. FEBS Letters, 585, 3587–3592. DOI: 10.1016/j.febslet.2011.10.027.

    Article  CAS  Google Scholar 

  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W. Z., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539. DOI: 10.1038/msb.2011.75.

    Article  Google Scholar 

  • Stewart, J. J. P. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13, 1173–1213. DOI: 10.1007/s00894-007-0233-4.

    Article  CAS  Google Scholar 

  • Stewart, J. P. P. (2008). MOPAC2009 [computer software]. Colorado Springs,CO, USA: Stewart Computational Chemistry.

    Google Scholar 

  • The UniProt Consortium (2014). Activities at the universal protein resource (UniProt). Nucleic Acids Research, 42, D191–D198. DOI: 10.1093/nar/gkt1140.

    Article  Google Scholar 

  • Thompson, A. A., Liu, W., Chun, E., Katritch, V., Wu, H. X., Vardy, E., Huang, X. P., Trapella, C., Guerrini, R., Calo, G., Roth, B. L., Cherezov, V., & Stevens, R. C. (2012). Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature, 485, 395–399. DOI: 10.1038/nature11085.

    Article  CAS  Google Scholar 

  • Topham, C. M., Mouledous, L., Poda, G., Maigret, B., & Meunier, J. C. (1998). Molecular modeling of the ORL1 receptor and its complex with nociceptin. Protein Engineering Design and Selection, 11, 1163–1179. DOI: 10.1093/protein/11.12.1163.

    Article  CAS  Google Scholar 

  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31, 455–461. DOI: 10.1002/jcc.21334.

    CAS  Google Scholar 

  • Trzaskowski, B., Latek, D., Yuan, S., Ghoshdastider, U., Debinski, A., & Filipek, S. (2012). Action of molecular switches in GPCRs — theoretical and experimental studies. Current Medicinal Chemistry, 19, 1090–1109. DOI: 10.2174/092986712799320556.

    Article  CAS  Google Scholar 

  • Wacker, D., Fenalti, G., Brown, M. A., Katritch, V., Abagyan, R., Cherezov, V., & Stevens, R. C. (2010). Conserved binding mode of human β2-adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. Journal of the American Chemical Society, 132, 11443–11445. DOI: 10.1021/ja105108q.

    Article  CAS  Google Scholar 

  • Yoshizumi, T., Miyazoe, H., Ito, H., Tsujita, T., Takahashi, H., Asai, M., Ozaki, S., Ohta, H., & Okamoto, O. (2008). Design, synthesis and structure-activity relationship study of a novel class of ORL1 receptor antagonists based on N-biarylmethyl spiropiperidine. Bioorganic & Medicinal Chemistry Letters, 18, 3778–3782. DOI: 10.1016/j.bmcl.2008.05.036.

    Article  CAS  Google Scholar 

  • Zaveri, N., Jiang, F. M., Olsen, C., Polgar, W., & Toll, L. (2005). Small-molecule agonists and antagonists of the opioid receptor-like receptor (ORL1, NOP): Ligand-based analysis of structural factors influencing intrinsic activity at NOP. The AAPS Journal, 7, E345–352. DOI: 10.1208/aapsj070234.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljiljana Došen-Mićović.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senćanski, M., Ivanović, M.D. & Došen-Mićović, L. Modelling of ORL1 receptor-ligand interactions. Chem. Pap. 68, 1305–1316 (2014). https://doi.org/10.2478/s11696-014-0577-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0577-z

Keywords

Navigation