Skip to main content
Log in

Scolicidal Effects of Chitosan–Curcumin Nanoparticles on the Hydatid Cyst Protoscolices

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

In the current era, cystic echinococcosis (CE), as larval stage of Echinococcus granulosus, is considered as a threat to human health. Scolicidal agents used in the surgery of cysts have different side effects. Therefore, the present study aimed to assess the effects of chitosan nanoparticles containing curcumin (Ch–Cu NPs) on the protoscolices of the hydatid cyst in vitro.

Methods

Ch–Cu NPs were synthesized using a simple co-precipitation method and their structural and morphological properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta analyzer, and Fourier transform infrared (FT-IR) spectroscopy. Then, the effects of different concentrations of Ch–Cu NPs (0.25, 0.05, 1, 2, and 4 mg/mL) on the fatality rate, and the length and width of protoscolices in different times (5, 10, 20, 30, and 60 min) were investigated. In addition, the SEM technique was used to evaluate the structure of the protoscolices after treatment.

Results

Based on the results, the presence of curcumin on the chitosan nanoparticles was confirmed by FT-IR analysis. Further, XRD analysis approved the crystal structure of chitosan NPs. Furthermore, the highest fatality rate was 68% in 4 mg/mL concentration of Ch–Cu NPs. The length and width of protoscolices decreased based on the high concentrations of Ch–Cu NPs, compared to the control group.

Conclusion

Finally, Ch–Cu NPs expressed good scolicidal activities, which made them suitable to be considered as an anti-protoscolex agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eckert J, Gemmell MA, Meslin F, Pawłowski ZS (2001) WHO/OIE manual on Echinococcosis in humans and animals: a public health problem of global concern. World Organization, Paris, p 265

    Google Scholar 

  2. Chalechale A, Hashemnia M, Rezaei F, Sayadpour M (2016) Echinococcus granulosus in humans associated with disease incidence in domestic animals in Kermanshah, west of Iran. J Parasit Dis 40:1322–1329. https://doi.org/10.1007/s12639-015-0681-1

    Article  PubMed  Google Scholar 

  3. Kern P (2003) Echinococcus granulosus infection: clinical presentation, medical treatment and outcome, Langenbecks. Langenbeck’s Arch Surg 388:413–420. https://doi.org/10.1007/s00423-003-0418-y

    Article  Google Scholar 

  4. Gavara CG, López-Andújar R, Ibáñez TB, Angel JMR, Herraiz AM, Castellanos FO, Ibars EP, Rodríguez FSJ (2015) Review of the treatment of liver hydatid cysts. World J Gastroenterol 7:124–131. https://doi.org/10.3748/wjg.v21.i1.124

    Article  Google Scholar 

  5. Rokni MM (2009) Echinococcosis/hydatidosis in Iran. Iran J Parasitol 4:1–16

    Google Scholar 

  6. Ezer A, Nursal TZR, Moray G, Yildirim S, Karakayali F, Noyan T, Haberal M (2006) Surgical treatment of liver hydatid cysts. HPB (Oxford) 8:38–42. https://doi.org/10.1080/13651820500468000

    Article  Google Scholar 

  7. WHO Informal Working Group on Echinococcosis (1996) Guidelines for treatment of cystic and alveolar echinococcosis. Bull World Health Org 74:231

    Google Scholar 

  8. Gupta R, Wadhawan S, Gupta R, Wadhawan S, Bhadoria P (2013) Intraoperative endobronchial rupture of pulmonary hydatid cyst: an airway catastrophe. J Anaesthesiol Clin Pharmacol 29:111–113. https://doi.org/10.4103/0970-9185.105817

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharafi SM, Sefiddashti RR, Sanei B, Yousefi M, Darani HY (2017) Scolicidal agents for protoscolices of Echinococcus granulosus hydatid cyst: review of literature. J Res Med Scis 16(22):92. https://doi.org/10.4103/jrms.JRMS_1030_16

    Article  Google Scholar 

  10. Albi A, Baudin F, Matmar M, Archambeau D (2002) Severe hypernatremia after hypertonic saline irrigation of hydatid cysts. Anesth Analg 95:1806–1808. https://doi.org/10.1097/00000539-200212000-00062

    Article  PubMed  Google Scholar 

  11. Topcu O, Kuzu I, Karayalcin K (2006) Effects of peritoneal lavage with scolicidal agents on survival and adhesion formation in rats. World J Surg 30:127–133. https://doi.org/10.1007/s00268-005-7960-4

    Article  PubMed  Google Scholar 

  12. Besim H, Karayalçin K, Hamamci O, Güngör C, Korkmaz A (1998) Scolicidal agents in hydatid cyst surgery. HPB Surg 10:347–351. https://doi.org/10.1155/1998/78170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rajabi MA (2009) Fatal reactions and methaemoglobinaemia after silver nitrate irrigation of hydatid cyst. Surg Pract 13:2–7. https://doi.org/10.1111/j.1744-1633.2008.00427.x

    Article  Google Scholar 

  14. Sahin M, Eryilmaz R, Bulbuloglu E (2004) The effect of scolicidal agents on liver and biliary tree (experimental study). J Investig Surg 17(6):323–326. https://doi.org/10.1080/08941930490524363

    Article  Google Scholar 

  15. Horton RJ (1989) Chemotherapy of echinococcus infection in man with albendazole. Trans R Soc Trop Med Hyg 83:97–102

    Article  CAS  PubMed  Google Scholar 

  16. Horton RJ (1997) Albendazole in treatment of human cystic echinococcosis: 12 years of experience. Acta Trop 64:79–93

    Article  CAS  PubMed  Google Scholar 

  17. Shams-Ul-Bari Arif SH, Malik AA, Khaja AR, Dass TA, Naikoo ZA (2011) Role of albendazole in the management of hydatid cyst liver. Saudi J Gastroenterol 17:343–347. https://doi.org/10.4103/1319-3767.84493

    Article  PubMed Central  Google Scholar 

  18. Rostami A, Taheri M, Gholizadeh M, Seyyedtabaei SJ, Saber Raeghi, Fallahi S (2016) Scolicidal effect of some herbs on Echinococcus granulosus protoscoleces : a systematic literature review. Herbal Med J 1:53–59

    Google Scholar 

  19. Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19:20091–20112. https://doi.org/10.1155/2013/982423.65

    Article  PubMed  PubMed Central  Google Scholar 

  20. Toda S, Miyase T, Arichi H, Tanizawa H, Takino Y (1985) Natural antioxidants.III, antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull 33:1725–1728. https://doi.org/10.1248/cpb.33.1725

    Article  CAS  PubMed  Google Scholar 

  21. Han SS, Keum YS, Seo HJ, Surh YJ (2002) Curcumin suppresses activation of NF-κB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol Res 35:337–342

    CAS  Google Scholar 

  22. Hosseinimehr SJ (2014) A review of preventive and therapeutic effects of curcumin in patients with cancer. Clin Excell 2:50–63

    Google Scholar 

  23. Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94:79–83. https://doi.org/10.1016/0304-3835(95)03827

    Article  CAS  PubMed  Google Scholar 

  24. Koide T, Nose M, Ogihara Y, Yabu Y, Ohta N (2002) Leishmanicidal effect of curcumin in vitro. Biol Pharm Bull 25:131–133. https://doi.org/10.1248/bpb.25.131

    Article  CAS  PubMed  Google Scholar 

  25. Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326:472–474. https://doi.org/10.1016/j.bbrc.2004.11.051

    Article  CAS  PubMed  Google Scholar 

  26. Perez-Arriaga L, Mendoza-Magana ML, Cortes-Zarate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanromán R, Ramirez-Herrera MA (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Tropica 98:152–161. https://doi.org/10.1016/j.actatropica.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  27. Said DE, Elsamad LM, Gohar YM (2012) Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol Res 111:545–554. https://doi.org/10.1007/s00436-012-2866-1

    Article  CAS  PubMed  Google Scholar 

  28. Nose M, Koide T, Ogihara Y, Yabu Y, Ohta N (1998) Trypanocidal effects of curcumin in vitro. Biol Pharm Bull 21:643–645. https://doi.org/10.1248/bpb.21.643

    Article  CAS  PubMed  Google Scholar 

  29. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087. https://doi.org/10.1016/j.lfs.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  30. Kamat V, Marathe I, Ghormade V, Bodas D, Paknikar K (2015) Synthesis of monodisperse chitosan nanoparticles and in situ drug loading using active microreactor. ACS Appl Mater Interfaces 7:22839–22847. https://doi.org/10.1021/acsami.5b05100

    Article  CAS  PubMed  Google Scholar 

  31. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd Res 339:2693–2700. https://doi.org/10.1016/j.carres.2004.09.007

    Article  CAS  Google Scholar 

  32. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272. https://doi.org/10.1080/08905439209549838

    Article  CAS  Google Scholar 

  33. Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Jpn J Cancer Res 92:459–466. https://doi.org/10.1111/j.1349-7006.2001.tb01116.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi LF, Xu ZR, Li Y, Jiang X, Han XY (2005) In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol 11:5136. https://doi.org/10.3748/wjg.v11.i33.5136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tavassoli M, Imani A, Tajik H, Moradi M, Pourseyed SH (2012) Novel in vitro efficiency of chitosan biomolecule against Trichomonas gallinae. Iran J Parasitol 7:92

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown TJ, Emelko MB (2009) Chitosan and metal salt coagulant impacts on Cryptosporidium and microsphere removal by filtration. Water Res 43:331–338. https://doi.org/10.1016/j.watres.2008.10.035

    Article  CAS  PubMed  Google Scholar 

  37. Gaafar MR, Mady RF, Diab RG, Shalaby TI (2014) Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Exp Parasitol 143:30–38. https://doi.org/10.1016/j.exppara.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  38. Tripathy S, Mahapatra SK, Chattopadhyay S, Das S, Dash SK, Majumder S, Pramanik P, Roy S (2013) A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop 128:494–503. https://doi.org/10.1016/j.actatropica.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  39. Mofazzal Jahromi MA, Rajayi H, A-Musawi S, Pirestani M, Fasihi Ramandi M, Ahmadi K, Sharifzadeh Peivasti V, Mohammad Hassan Z, Kamali M, Mirnejad R (2015) Evaluation of antibacterial effect of curcumin loaded chitosan nanoparticles. J Fasa Univ Med Sci 5:134–141

    CAS  Google Scholar 

  40. Sharma D, Shukla R, Ali J, Sharma S, Bajpai P, Pathak N (2016) Phytochemical evaluation, antioxidant assay, antibacterial activity and determination of cell viability (J774 and THP1 alpha cell lines) of P. sylvestris leaf crude and methanol purified fractions. Exp Clin Sci 5:85–94. https://doi.org/10.17179/excli2015-689

    Article  Google Scholar 

  41. Moazeni M, Larki S, Saharkhiz MJ, Oryan A, Ansary Lari M, Mootabi Alavia A (2014) In vivo study of the efficacy of the aromatic water of Zataria multiflora on hydatid cysts. Antimicrob Agents Chemother 58:6003–6008. https://doi.org/10.1128/AAC.02963-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaewnopparat N, Kaewnopparat S, Jangwang A, Panichayupakaranant P (2009) Increased solubility, dissolution and physicochemical studies of Curcumin–Polyvinylpyrrolidone K-30 solid dispersions. World Acad Sci Eng Technol 31:137–142

    Google Scholar 

  43. Singh PK, Wani K, Kaul-Ghanekar R, Prabhune A, Ogale S (2014) From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Adv 4:60334–60341. https://doi.org/10.1039/C4RA07300B

    Article  CAS  Google Scholar 

  44. Mandal S, Mandal MD (2012) Human cystic echinococcosis: epidemiologic, zoonotic, clinical, diagnostic and therapeutic aspects. Asian Pac J Trop Biomed 5:253–260. https://doi.org/10.1016/S1995-7645(12)60035-2

    Article  Google Scholar 

  45. Das RK, Kasoju N, Bora U (2010) Encapsulation of curcumin in alginate–chitosan–pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 6:153. https://doi.org/10.1016/j.nano.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  46. Lashkarizadeh MR, Asgaripour K, Saedi Dezaki E, Fasihi Harandi M (2015) Comparison of scolicidal effects of amphotricin B, silver nanoparticles, and Foeniculum vulgare Mill on hydatid cysts protoscoleces. Iran J Parasitol 10:206–212

    PubMed  PubMed Central  Google Scholar 

  47. Rahimi MT, Ahmadpour E, Rahimi Esboei B, Spotin A, Kohansal Koshki MH, Alizadeh A, Honary S, Barabadi H, Ali Mohammadi M (2015) Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. Int J Surg 19:128–133

    Article  PubMed  Google Scholar 

  48. Nematollahi, Shahbazi, Rafat A, Ghanbarlu M (2018) Comparative survey on scolicidal effects of selenium and silver nanoparticles on protoscolices of hydatid cyst. Open Vet J 8:374–377

    Article  PubMed  PubMed Central  Google Scholar 

  49. Napooni S, Arbabi M, Delavari M, Hooshyar H, Rasti S (2019) Lethal effects of gold nanoparticles on protoscolices of hydatid cyst: in vitro study. Comparat Clin Pathol 28:143–150

    Article  CAS  Google Scholar 

  50. Abdel-Baki AAS, Almalki E, Mansour L, Al-Quarishy S (2016) In vitro Scolicidal effects of Salvadora persica root extract against Protoscolices of Echinococcus granulosus. Korean J Parasitol 54:61–66

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gholami SH, Rahimi-Esboei B, Ebrahimzadeh MA, Pourhajibagher M (2013) In vitro effect of Sambucusebulus on scolices of hydatid cysts. Eur Rev Med Pharmacol Sci 17:1760–1765

    CAS  PubMed  Google Scholar 

  52. Haghani A, Roozitalab A, Safi SN (2014) Low scolicidal effect of Ocimum bacilicum and Allium cepa on protoccoleces of hydatid cyst: an in vitro study. Comparat Clin Pathol 23:847–853

    Article  Google Scholar 

  53. Mahmoudvand H, Sharififar F, Dezaki ES, Ezatpour B, Jahanbakhsh S, FasihiHarandi M (2014) Protoscolecidal effect of Berberis vulgaris root extract and its main compound, berberine in cystic echinococcosis. Iran J Parasitol 9:26–34

    Google Scholar 

  54. Moazeni M, Nazer A (2011) In vitro lethal effect of Zingiber officinale R. On protoscolices of hydatid cyst from sheep liver. Microbiol Res 2:91–94

    Article  Google Scholar 

Download references

Acknowledgements

The Vice Chancellor for Research of Kashan University of Medical Sciences granted this study (project No., 94150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Delavari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napooni, S., Delavari, M., Arbabi, M. et al. Scolicidal Effects of Chitosan–Curcumin Nanoparticles on the Hydatid Cyst Protoscolices. Acta Parasit. 64, 367–375 (2019). https://doi.org/10.2478/s11686-019-00054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11686-019-00054-8

Keywords

Navigation