Skip to main content
Log in

Identifying phenotypes involved in susceptibility to Schistosoma mansoni infection in F1B6CBA mice

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Schistosomiasis is a disease with a strong genetic component influenced by socioeconomic and ecological factors. Epidemiological studies have identified several genetic regions involved in the schistosomiasis susceptibility. However, it is not well known what physiological traits are predisposing to the disease. The study of experimental infections in inbred mouse strains with variable genetic susceptibility to the disease offers a good opportunity to tackle this question. F1B6CBA hybrid between the most divergent strains was infected in order to characterize the immunophenotypes that correlate with the susceptibility of schistosomiasis disease in mice. Complete blood counts and immunophenotype were determined at 0, 3, 6, and 9 weeks post infection. Nine weeks after cercariae exposure, animals were perfused and worm recovery was assessed. A large number of hepatic lesions, a reduction in the eosinophil and basophil count in the acute phase of infection and the decreased number of monocytes, neutrophils and B-lymphocytes are phenotypes associated with increased susceptibility to S. mansoni infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony R.M., Rutitzky L.I., Urban J.F., Jr., Stadecker M.J., Gause W.C. 2007. Protective immune mechanisms in helminth infection. Nature Reviews Immunology, 7, 975–987. DOI: 10.1038/nri2199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bethony J.M., Quinnell R.J. 2008. Genetic epidemiology of human schistosomiasis in Brazil. Acta Tropica, 108, 166–174. DOI: 10.1016/j.actatropica.2007.11.008.

    Article  CAS  PubMed  Google Scholar 

  • Bevan M.J. 1995. Antigen presentation to cytotoxic T lymphocytes in vivo. Journal Experimental Medicine, 182, 639–641.

    Article  CAS  Google Scholar 

  • Bosshardt S.C., Freeman G.L., Jr., Secor W.E., Colley D.G. 1997. IL-10 deficit correlates with chronic, hypersplenomegaly syndrome in male CBA/J mice infected with Schistosoma mansoni. Parasite Immunology, 19, 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Burke M.L., Jones M.K., Gobert G.N., Li Y.S., Ellis M.K., McManus D.P. 2009. Immunopathogenesis of human schistosomiasis. Parasite Immunology, 31, 163–176. DOI: 10.1111/j.1365-3024.2009.01098.x.

    Article  CAS  PubMed  Google Scholar 

  • Campino S., Kwiatkowski D., Dessein A. 2006. Mendelian and complex genetics of susceptibility and resistance to parasitic infections. Seminars in immunology, 18, 411–422. DOI: 10.1016/j.smim.2006.07.011.

    Article  CAS  PubMed  Google Scholar 

  • Cooke G.S., Hill A.V. 2001. Genetics of susceptibility to human infectious disease. Nat Reviews Genetic, 2, 967–977.

    Article  CAS  Google Scholar 

  • Cheever A.W. 1986. The intensity of experimental schistosome infections modulates hepatic pathology. American Journal of Tropical Medicine Hygiene, 35, 124–133.

    CAS  PubMed  Google Scholar 

  • Cheever A.W., Dunn M.A., Dean D.A., Duvall R.H. 1983. Differences in hepatic fibrosis in ICR, C3H, and C57BL/6 mice infected with Schistosoma mansoni. American Journal of Tropical Medicine Hygiene, 32, 1364–1369.

    CAS  PubMed  Google Scholar 

  • Cheever A.W., Duvall R.H., Hallack T.A., Jr., Minker R.G., Malley J.D., Malley K.G. 1987. Variation of hepatic fibrosis and granuloma size among mouse strains infected with Schistosoma mansoni. American Journal of Tropical Medicine Hygiene, 37, 85–97.

    CAS  PubMed  Google Scholar 

  • Cheever A.W., Lenzi J.A., Lenzi H.L., Andrade Z.A. 2002. Experimental models of Schistosoma mansoni infection. Memorias do Instituto Oswaldo Cruz, 97, 917–940.

    Article  PubMed  Google Scholar 

  • Davies S.J., Grogan J.L., Blank R.B., Lim K.C., Locksley R.M., McKerrow J.H. 2001. Modulation of blood fluke development in the liver by hepatic CD4+ lymphocytes. Science, 294, 1358–1361.

    Article  CAS  PubMed  Google Scholar 

  • Fanning M.M., Peters P.A., Davis R.S., Kazura J.W., Mahmoud A.A. 1981. Immunopathology of murine infection with Schistosoma mansoni: relationship of genetic background to hepatosplenic disease and modulation. Journal of Infectious Disease, 144, 148–153.

    Article  CAS  Google Scholar 

  • Friedman J.F., Kanzaria H.K., McGarvey S.T. 2005. Human schistosomiasis and anemia: the relationship and potential mechanisms. Trends in Parasitology, 21, 386–392. DOI: 10.1016/j.pt.2005.06.006.

    Article  PubMed  Google Scholar 

  • Gause W.C., Urban J.F., Jr., Stadecker M.J. 2003. The immune response to parasitic helminths: insights from murine models. Trends in Immunology, 24, 269–277. DOI: S1471490603001017 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Gessner A., Mohrs K., Mohrs M. 2005. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. The Journal of Immunology, 174, 1063–1072. DOI:174/2/1063 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Gryseels B., Polman K., Clerinx J., Kestens L. 2006. Human schistosomiasis. Lancet, 368, 1106–1118. DOI: 10.1016/S0140-6736(06)69440-3.

    Article  PubMed  Google Scholar 

  • Ji F., Liu Z., Cao J., Li N., Zuo J., Chen Y., Wang X., Sun J.. 2008. B cell response is required for granuloma formation in the early infection of Schistosoma japonicum. PLoS One, 3, e1724. DOI: 10.1371/journal.pone.0001724.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kovacsovics-Bankowski M., Rock K.L. 1995. A phagosome-tocytosol pathway for exogenous antigens presented on MHC class I molecules. Science, 267, 243–246.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence R.A., Allen J.E., Osborne J., Maizels R.M. 1994. Adult and microfilarial stages of the filarial parasite Brugia malayi stimulate contrasting cytokine and Ig isotype responses in BALB/c mice. The Journal of Immunology, 153, 1216–1224.

    CAS  PubMed  Google Scholar 

  • Mohrs K., Wakil A.E., Killeen N., Locksley R.M., Mohrs M. 2005. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity, 23, 419–429. DOI: 10.1016/j.immuni.2005.09.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pardo J., Carranza C., Turrientes M.C., Perez Arellano J.L., Lopez Velez R., Ramajo V., Muro A. 2004. Utility of Schistosoma bovis adult worm antigens for diagnosis of human schistosomiasis by enzyme-linked immunosorbent assay and electroimmunotransfer blot techniques. Clinical and Diagnostic Laboratoy Immunology, 11, 1165–1170. DOI: 10.1128/CDLI.11.6.1165-1170.2004.

    CAS  Google Scholar 

  • Pearce E.J., MacDonald A.S. 2002. The immunobiology of schistosomiasis. Nature Reviews Immunology, 2, 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Pedras-Vasconcelos J.A., Pearce E.J. 1996. Type 1 CD8+ T cell responses during infection with the helminth Schistosoma mansoni. The Journal of Immunology, 157, 3046–3053.

    CAS  PubMed  Google Scholar 

  • Ross A.G., Bartley P.B., Sleigh A.C., Olds G.R., Li Y., Williams G.M., McManus D.P. 2002. Schistosomiasis. New England Journal of Medicine, 346, 1212–1220. DOI: 10.1056/NEJMra012396346/16/1212.

    Article  PubMed  Google Scholar 

  • Rumbley C.A., Sugaya H., Zekavat S.A., El Refaei M., Perrin P.J., Phillips S.M. 1999. Activated eosinophils are the major source of Th2-associated cytokines in the schistosome granuloma. The Journal of Immunology, 162, 1003–1009.

    CAS  PubMed  Google Scholar 

  • Rutitzky L.I., Hernandez H.J., Yim Y.S., Ricklan D.E., Finger E., Mohan C., Peter I., Wakeland E.K., Stadecker M.J. 2005. Enhanced egg-induced immunopathology correlates with high IFN-gamma in murine schistosomiasis: identification of two epistatic genetic intervals. The Journal of Immunology, 174, 435–440. DOI: 174/1/435 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Rutitzky L.I., Mirkin G.A., Stadecker M.J. 2003. Apoptosis by neglect of CD4+ Th cells in granulomas: a novel effector mechanism involved in the control of egg-induced immunopathology in murine schistosomiasis. The Journal of Immunology, 171, 1859–1867.

    Article  CAS  PubMed  Google Scholar 

  • Rutitzky L.I., Stadecker M.J. 2011. Exacerbated egg-induced immunopathology in murine Schistosoma mansoni infection is primarily mediated by IL-17 and restrained by IFN-gamma. European journal of immunology, 41, 2677–2687. DOI: 10.1002/eji.201041327.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider C.A., Rasband W.S., Eliceiri K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9, 671–675.

    Article  CAS  PubMed  Google Scholar 

  • Shariati F., Perez-Arellano J.L., Carranza C., Lopez-Aban J., Vicente B., Arefi M., Muro A. 2011. Evaluation of the role of angiogenic factors in the pathogenesis of schistosomiasis. Experimental parasitology, 128, 44–49. DOI: 10.1016/j.exppara.2011.01.016.

    Article  CAS  PubMed  Google Scholar 

  • Siles-Lucas M., Uribe N., Lopez-Aban J., Vicente B., Orfao A., Nogal-Ruiz J.J., Feliciano A.S., Muro A. 2007. The Schistosoma bovis Sb14-3-3zeta recombinant protein cross-protects against Schistosoma mansoni in BALB/c mice. Vaccine, 25, 7217–7223. DOI: 10.1016/j.vaccine.2007.07.021.

    Article  CAS  PubMed  Google Scholar 

  • Smith P.M., Shainheit M.G., Bazzone L.E., Rutitzky L.I., Poltorak A., Stadecker M.J. 2009. Genetic control of severe egg-induced immunopathology and IL-17 production in murine schistosomiasis. The Journal of Immunology, 183, 3317–3323. DOI: 10.4049/jimmunol.0901504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stadecker M.J., Asahi H., Finger E., Hernandez H.J., Rutitzky L.I., Sun J. 2004. The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunology Reviews, 201, 168–179. DOI: 10.1111/j.0105-2896.2004.00197.xIMR197[pii].

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: A Language and Environment for Statistical Computing. Vienna, Austria.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Pérez del Villar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Villar, L.P., Vicente, B., Blanco-Gómez, A. et al. Identifying phenotypes involved in susceptibility to Schistosoma mansoni infection in F1B6CBA mice. Acta Parasit. 59, 529–539 (2014). https://doi.org/10.2478/s11686-014-0277-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11686-014-0277-4

Keywords

Navigation