Skip to main content
Log in

Effects of smoke water and karrikin on seed germination of 13 species growing in China

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Plant-derived smoke water (SW), derived from combusted plant material, has been shown to stimulate seed germination and improve seedling vigor of a number of plant species from fire-dependent Mediterranean-type climate areas. The effects of SW on seed germination of 13 plant species from southern tropical and subtropical monsoon climate regions of South China are reported for the first time in this study using laboratory and pot trials. Among the 13 species tested, only Aristolochia debilis showed a significant positive response to commercial SW when diluted 1:10. Seed germination of A. debilis was also stimulated by 1–100 nM 3-methyl-2H-furo [2, 3-c] pyran-2-one (karrikin 1 or KAR1) and by 10–1000 µM gibberellic acid (GA3). GA3 stimulated seed germination of Santalum album and significantly elongated the radicles of A. debilis while SW could not. The functions and/or metabolic pathways of Kar1 and GA3 are likely to be separate and/or distinct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Kar1 :

karrikin 1

GA3 :

gibberellic acid

SW:

smoke water

References

  1. Keeley J.E., Role of fire in seed germination of woody taxa in California chaparral, Ecol., 1987, 68, 434–443

    Article  Google Scholar 

  2. Keeley J.E., Fotheringham C.J., Trace gas emissions and smoke-induced seed germination. Science, 1997, 276, 1248–1250

    Article  CAS  Google Scholar 

  3. de Lange J.H., Boucher C., Autecological studies on Audouinia capitata (Bruniaceae). I. Plantderived smoke as a seed germination cue. S. Afr. J. Bot., 1990, 56, 700–703

    Google Scholar 

  4. Brown N.A.C., Kotze G., Botha P.A., The promotion of seed germination of Cape Erica species by plantderived smoke. Seed Sci. Res., 1993, 21: 179–185

    Google Scholar 

  5. Brown N.A.C., Botha P.A., Prosch D., Where there’s smoke, The Garden J. Roy Hort. Soc., London. 1995a, 120, 402–405

    Google Scholar 

  6. Baxter B.J.M., van Staden J., Granger J.E., Brown N.A.C., Plant-derived smoke and smoke extracts stimulate seed germination of the fire-climax grass Themeda triandra Forssk, Env. Exp. Bot., 1994, 34, 217–223

    Article  Google Scholar 

  7. Pierce S.M., Esler K., Cowling R.M., Smoke-induced germination of succulents (Mesembryanthemaceae) from fire prone and firefree habitats in South Africa, Oecologia 1995, 102, 520–522

    Article  Google Scholar 

  8. Brown N.A.C., van Staden J., Smoke as a germination cue: a review, Plant Growth Regul., 1997, 22, 115–124

    Article  CAS  Google Scholar 

  9. Jain N. and van Staden J., The potential of the smoke-derived compound 3-methyl-2H-furo [2,3-c] pyran-2-one as a priming agent for tomato seeds. Seed Sci. Res., 2007, 17, 175–181

    Article  CAS  Google Scholar 

  10. Ghebrehiwot H.M., Kulkarni M.G., Kirkman K.P., van Staden J., Smoke-water and a smoke-isolated butenolide improve germination and seedling vigour of Eragrostis tef (Zucc) Trotter under high temperature and low osmotic potential. J. Agric. Crop Sci., 2008, 194, 270–277

    Article  Google Scholar 

  11. Ghebrehiwot H.M., Kulkarni M.G., Kirkman K.P., van Staden J., Smoke solutions and temperature influence the germination and seedling growth of South African mesic grassland species, Rangeland Ecol Management, 2009, 62:572–578

    Google Scholar 

  12. Soós V., Juhász A., Light M.E., van Staden J., Balázs E., Smoke-water-induced changes of expression pattern in Grand Rapids lettuce achenes. Seed Sci. Res., 2009a, 19, 37–49

    Article  Google Scholar 

  13. Soós V., Sebestyén E., Juhász A., Pintér J., Light M.E., van Staden J., Balázs E. (2009b) Stress-related genes define essential steps in the response of maize seedlings to smoke-water, Funct. Integr. Genomics, 9, 231–242

    Article  PubMed  Google Scholar 

  14. Soós V., Sebestyén E., Juhász A., Light M.E., Kohout L., Szalai G., Tandori J., van Staden J., Balázs E., Transcriptome analysis of germinating maize kernels exposed to smoke-water and the active compound KAR1, BMC Plant Biol., 2010, 10, 236–249

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kulkarni M.G., Ascough G.D., Verschaeve L., Baeten K., Arruda M.P., van Staden J., Effect of smoke-water and a smoke-isolated butenolide on the growth and genotoxicity of commercial onion, Sci. Hort., 2010, 124, 434–439

    Article  CAS  Google Scholar 

  16. Roche S., Dixon K.W., Pate J.S., Smoke — a new process for germinating Australian plants, Aust. Hort., 1994, 91, 46–48

    Google Scholar 

  17. Roche S., Dixon K.W., Pate J.S., Seed ageing and smoke: partner cues in the amelioration of seed dormancy in selected Australian native species, Aust. J. Bot., 1997, 45, 783–815

    Article  Google Scholar 

  18. Dixon K.W., Roche S., Pate J.S., The primitive effect of smoke derived from burnt native vegetation on seed germination of West Australian plants, Oecologia, 1995, 101, 185–192

    Article  Google Scholar 

  19. Dixon K.W., Roche S., The role of combustion products (smoke) in stimulating ex-situ and in-situ germination of Western Australian plants, Proc. Int. Plant Prop Soc. 1995, 45: 53–56

    Google Scholar 

  20. Adkins S.W., Peters N.C.B., Smoke derived from burnt vegetation stimulates germination of arable weeds, Seed Sci. Res., 2001, 11, 213–222

    Google Scholar 

  21. Allan S.M., Adkins S.W., Preston C.A., Bellairs S.M., Improved germination of the Australian natives: Hibbertia commutata, Hibbertia amplexicaulis (Dilleniaceae), Chamaescilla corymbosa (Liliaceae) and Leucopogon nutans (Epacridaceae), Aust. J. Bot., 2004, 52, 345–351

    Article  Google Scholar 

  22. Read T.R., Bellairs S.M., Mulligan D.R., Lamb D., Smoke and heat effect on soil seed bank germination for the re-establishment of a native forest community in New South Wales, Aust. J. Ecol., 2000, 25, 48–57

    Article  Google Scholar 

  23. Coates T.D., The effect of concentrated smoke products on the restoration of highly disturbed mineral sands in southeast Victoria, Ecol. Man. Rest., 2003, 4, 133–139.

    Article  Google Scholar 

  24. van Staden J., Jäger A.K., Light M.E., Burger B.V., Isolation of the major germination cue from plantderived smoke, S. Afr. J. Bot., 2004, 70, 654–659

    Google Scholar 

  25. Kulkarni M.G., Sparg S.G., Light M.E., van Staden J., Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide (3-methyl-2H-furo [2, 3-c] pyran-2-one), J. Agr. Crop Sci., 2006, 192, 395–398

    Article  CAS  Google Scholar 

  26. Flematti G.R., Ghisalberti E.L., Dixon K.W., Trengrove R.D., A compound from smoke that promotes seed germination. Science, 2004, 305, 977

    Article  CAS  PubMed  Google Scholar 

  27. Sparg S.G., Kulkarni M.G., Light M.E., van Staden J., Improving seedling vigour of indigenous medicinal plants with smoke, Bioresearch Tech., 2005, 96, 1323–1330

    Article  CAS  Google Scholar 

  28. Stevens J.C., Merritt D.J., Flematti G.R., Ghisalberti E.L., Dixon K.W., Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2Hfuro [2, 3-c]_pyran-2-one under laboratory and field conditions, Plant Soil., 2007, 298, 113–124

    Article  CAS  Google Scholar 

  29. Jain N., Kulkarni M.G., van Staden J., A butenolide isolated from smoke can overcome the detrimental effects of extreme temperatures during tomato seed germination, Plant Growth Regul., 2008, 49, 263–267

    Article  Google Scholar 

  30. Light M.E., Burger B.V., Staerk D., Kohout L., van Staden J., Butenolides from plant-derived smoke: natural plant-growth regulators with antagonistic actions on seed germination, J. Nat. Prod., 2010, 73, 267–269

    Article  CAS  PubMed  Google Scholar 

  31. Flematti G.R., Ghisalberti E.L., Dixon K.W., Synthesis of the seed germination stimulant 3-methyl-2H-furo [2, 3-c]_pyran-2-one, Tetrahedron Lett., 2005, 46:5719–5721

    Article  CAS  Google Scholar 

  32. Flematti G.R., Ghisalberti E.L., Dixon K.W., Trengove R.D., Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke, J. Agric. Food Chem., 2009, 57, 9475–9480

    Article  CAS  PubMed  Google Scholar 

  33. Daws M.I., Jennifer D., Pritchard H.W., Brown N.A.C., van Staden J., Butenolide from plantderived smoke enhances germination and seeding growth of arable weed species, Plant Growth Regul., 2007, 51, 73–82

    Article  CAS  Google Scholar 

  34. Dixon K.W., Merritt D.J., Flematti G.R., Ghisalberti E.L., Karrikinolide: a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration, and agriculture, Acta Hortic., 2009, 813, 155–170

    CAS  Google Scholar 

  35. Nelson D.C., Riseborough J.A., Flematti G.R., Stevens J., Ghisalberti E.L., Dixon K.W., Smith S.M., Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light, Plant Physiol., 2009, 149, 863–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nelson D.C., Flematti G.R., Riseborough J.A., Ghisalberti E.L., Dixon K.W., Steven M.S. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana, Proc. Nat. Acad. Sci. (USA), 2010, 107, 7095–7100

    Article  CAS  Google Scholar 

  37. Nelson D.C., Scaffidi A., Dun E.A., Waters M.T., Flematti G.R., Dixon K.W., Beveridge C.A., Ghisalberti E.L., Smith S.M., F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Nat. Acad. Sci. (USA), 2011, 108, 8897–8902

    Article  CAS  Google Scholar 

  38. Long R.L., Williams K., Griffiths E.M., Flematti G.R., Merritt D.J., Stevens J.C., Turner S.R., Powles S.B., Dixon K.W., Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid, Ann. Bot., 2010, 105, 1063–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Long R.L., Stevens J.C., Griffiths E.M., Adamek M., Gorecki M.J., Powles S.B., Merritt D.J., Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide. Ann. Bot., 2011, 108, 933–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Drewes F.E., Smith M.T., van Staden J., The effect of a plant-derived smoke extract in the germination of light sensitive lettuce seed, Plant Growth Regul., 1995, 16, 205–209

    Article  CAS  Google Scholar 

  41. Thomas T.H., van Staden J., Dormancy break of celery (Apium graveolens L.) seeds by plantderived smoke extract, Plant Growth Regul., 1995, 17, 195–198

    Article  CAS  Google Scholar 

  42. Merritt D.J., Kristiansen M., Flematti G.R., Turner S.R., Ghisalberti E.L., Trengove R.D., Dixon K.W., Effects of a butenolide present in smoke on lightmediated germination of Australian Asteraceae, Seed Sci. Res., 2006, 16, 29–35

    Article  CAS  Google Scholar 

  43. Tieu A., Dixon K.A., Dixon K.S., Julie A.P., Ingrid M.S., Germination of four species of native western Australian plants using plant-derived smoke, Aust. J. Bot., 1999, 47, 207–219

    Article  Google Scholar 

  44. Zhang X.H., Teixeira da Silva J.A., Duan J., Deng R.F., Xu X.L., Ma G.H., Endogenous hormone levels and anatomical characters of haustoria in Santalum album L. seedlings before and after attachment to the host. J. Plant Physiol., 2012, 69, 859–866

    Article  Google Scholar 

  45. Yang X.Y., Zhang X.H, Teixeira da Silva JA, Liang K.M., Deng R.F., Ma G.H., Ontogenesis of the collapsed layer during haustorium development in the root hemi-parasite Santalum album Linn, Plant Biol., 2014, 16, 282–290

    Article  Google Scholar 

  46. Teixeira da Silva, J.A., Smoke-saturated water from five grasses growing in Japan inhibits in vitro protocorm-like body formation in hybrid Cymbidium, J. Plant Dev., 2013, 20, 63–70

    Google Scholar 

  47. Brown N.A.C., Jamieson H., Botha P.A., Stimulation of seed germination in South African species of Restionaceae by plant-derived smoke, Plant Growth Regul., 1994, 15, 93–100.

    Article  Google Scholar 

  48. Pimenta L.M.J., Lange T., Gibberellin biosynthesis and the regulation of plant development, Plant. Biol., 2006, 8:281–290

    Article  Google Scholar 

  49. Ma G.H., Bunn E., Dixon K.W., Flemati G., Comparative enhancement of germination and vigor in seed and somatic embryos by the smoke chemical 3-methyl-2H-furo [2, 3-c] pyran-2-one in Baloskion tetraphyllum (Restionaceae), In Vitro Cell Dev. Biol. — Plant, 2006, 42, 305–308

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Ma.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Teixeira da Silva, J.A. & Ma, G. Effects of smoke water and karrikin on seed germination of 13 species growing in China. cent.eur.j.biol. 9, 1108–1116 (2014). https://doi.org/10.2478/s11535-014-0338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0338-6

Keywords

Navigation