Skip to main content
Log in

A reverse engineering approach to the Weil representation

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aubert A.-M., Michel J., Rouqier R., Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J., 1996, 83, 353–397.

    Article  MATH  MathSciNet  Google Scholar 

  2. Cliff G., McNeilly D., Szechtman F., Weil representations of symplectic groups over rings, J. London Math. Soc. (2), 2000, 62(2), 423–436.

    Article  MATH  MathSciNet  Google Scholar 

  3. Dieudonné J., Éléments d’Analyse, Gauthier-Villars Éditeur, 1971.

    MATH  Google Scholar 

  4. Folland G. B., Real analysis: Modern techniques and their applications, 2nd Edition. Books. Published: 26 October 2012.

    Google Scholar 

  5. Gérardin P., The Weil representations associated to finite fields, J. of Algebra, 1977, 46, 54–101.

    Article  MATH  Google Scholar 

  6. Gurevich S., Hadani R., The geometric Weil representation. Selecta Math. N.S., 2007, 13, 465–481.

    Article  MATH  MathSciNet  Google Scholar 

  7. Gurevich S., Hadani R., Quantization of symplectic vector spaces over finite fields, J. Symplectic Geom., 2009, 7, 475–502.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gurevich S., Hadani R., Howe R., Quadratic reciprocity and the sign of the Gauss sum via the finite the Weil representation. Int. Math. Res. Not. 2010, 3729–3745.

    Google Scholar 

  9. Gutiérrez L., Pantoja J., Soto-Andrade J., On generalized Weil representations over involutive rings, Contemporary Mathematics 544, 2011, 109–123.

    Article  Google Scholar 

  10. Harish-Chandra. Invariant Eigendistributions on a Semisimple Lie groups. Trans. Amer. Math. Soc, 1965, 119, 457–508.

    Article  MATH  MathSciNet  Google Scholar 

  11. Harish-Chandra, Harmonic analysis on reductive p-adic groups, 1970, Bull. Amer. Math. Soc., 76, 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  12. Hartshorne R., Algebraic Geometry. Springer-Verlag, 1977. Graduate Text in Mathematics: 52.

    MATH  Google Scholar 

  13. Hörmander L., The analysis of linear partial differential operators I, Springer Verlag, 1983.

    Book  MATH  Google Scholar 

  14. Hörmander L., The analysis of linear partial differential operators III, Springer Verlag, 1985.

    MATH  Google Scholar 

  15. Howe R., Invariant theory and duality for classical groups over finite fields, with applications to their singular representation theory, preprint, 1973.

    Google Scholar 

  16. Howe R., θ-series and invariant theory, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, 275–285, Amer. Math. Soc., Providence, R.I., 1979.

    Google Scholar 

  17. Howe R., Quantum mechanics and partial differential equations. J. Funct. Anal., 1980, 38, 188–254.

    Article  MATH  MathSciNet  Google Scholar 

  18. Howe R., The oscillator semigroup, Proc. Symp. Pure Math., Amer. Math. Soc., 48, 61–132, 1988.

    Article  MathSciNet  Google Scholar 

  19. Howe R., Transcending classical invariant theory, J. Amer. Math. Soc. 2, 1989, 2, 535–552.

    Article  MATH  MathSciNet  Google Scholar 

  20. Jacobson N., Basic Algebra II, W. H. Freeman and Company, San Francisco, 1980.

    MATH  Google Scholar 

  21. Johnson R., Pantoja J., Weil representation of SL*(2, A) for a locally profinite ring A with involution, J. Lie Theory 14, 2004, 1–9.

    MATH  MathSciNet  Google Scholar 

  22. Kashiwara M., Vergne M., On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math., 1978, 44, 1–47.

    Article  MATH  MathSciNet  Google Scholar 

  23. Kirillov A. A., Elements of the theory of representations, Nauka, Moscow, 1978.

    Google Scholar 

  24. Lion G., Vergne M., The Weil representation, Maslov index and theta series. Birkhéuser, Boston, 1980.

    MATH  Google Scholar 

  25. Matsumoto H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. (4), 1969, 2(1), 1–62.

    MATH  Google Scholar 

  26. Müller D., Ricci F., Analysis of second order differential operators on Heisenberg group I. Invent. Math., 1990, 101, 545–582.

    Article  MATH  MathSciNet  Google Scholar 

  27. Nazarov M., Neretin Y., Olshanskii G., Semi-groupes engendrés par la représentation de Weil du groupe symplectique de dimension infinie. C. R. Acad. Sci. Paris Sr. I Math. 1989, 309, 443–446 (in French).

    MATH  MathSciNet  Google Scholar 

  28. Neretin Y., Lectures on Gaussian integral operators and classical groups. EMS Series of Lectures in Mathematics European Mathematical Society (EMS), Zurich, 2011.

    Book  MATH  Google Scholar 

  29. Neretin Y., On a semigroup of operators in the boson Fock space. (Russian) Funktsional. Anal. i Prilozhen. 24 (1990), 63–73, 96; translation in Funct. Anal. Appl. 24 (1990), 135–144.

    MathSciNet  Google Scholar 

  30. Neuhauser M., An explicit construction of the metaplectic representation over a finite field, Journal of Lie Theory 12, 2002, 15–30.

    MATH  MathSciNet  Google Scholar 

  31. Perrin P., Représentations de Schrödinger, Indice de Maslov et groupe métaplectique, Non Commutative Harmonic Analysis and Lie Groups 880 (1981), 370–407.

    Article  MathSciNet  Google Scholar 

  32. Prasad A., On character values and decomposition of the Weil representation associated to a finite abelian group, J. Analysis, 17, 2009, 73–86.

    MATH  Google Scholar 

  33. Ranga Rao R., On some explicit formulas in the theory of Weil representations. Pacific Journal of Mathematics, 1993, 157, 335–371.

    Article  MATH  MathSciNet  Google Scholar 

  34. Rudin W., Principles of mathematical analysis, McGraw-Hill, Inc, 1964.

    MATH  Google Scholar 

  35. Shale D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc., 1962, 340, 309–321.

    MathSciNet  Google Scholar 

  36. Thomas T., Character of the Weil representation, 2008, 77(2), 221–239.

    MATH  Google Scholar 

  37. Thomas T., The Weil representation, the Weyl transform, and transfer factor, 2009.

    Google Scholar 

  38. Von Neumann J., Mathematical fundations of quantum mechanics, translated by Robert T. Beyer, Princeton University Press, 1955.

    Google Scholar 

  39. Waldspurger J.-L., Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Israel Math. Conf. Proc., 2, 1989, 267–324.

    MathSciNet  Google Scholar 

  40. Wallach N., Real Reductive Groups I, Academic Press, 1988.

    MATH  Google Scholar 

  41. Warner, G., Harmonic analysis on semisimple Lie groups. I, Springer-Verlag, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 188.

    Book  Google Scholar 

  42. Weil A., Sur certains groupes d’opérateurs unitaires, 1964, Acta Math., 111, 143–211.

    Article  MATH  MathSciNet  Google Scholar 

  43. Weil A., Basic Number Theory, Springer-Verlag, 1973. Classics in Mathematics.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Aubert.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubert, AM., Przebinda, T. A reverse engineering approach to the Weil representation. centr.eur.j.math. 12, 1500–1585 (2014). https://doi.org/10.2478/s11533-014-0428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-014-0428-8

MSC

Keywords

Navigation