Skip to main content
Log in

Alfentanil-Induced Miosis as a Surrogate Measure of Alfentanil Pharmacokinetics in Patients with Mild and Moderate Liver Cirrhosis

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objectives

(i) To evaluate the pupillary response to alfentanil as a surrogate measure of alfentanil pharmacokinetics in cirrhotic patients and to compare the data observed in cirrhotic patients with those found in healthy volunteers (historical control group); and (ii) to compare this test with other liver function tests in cirrhotic patients.

Methods

Six patients with mild cirrhosis (Child-Pugh grade A) and six patients with moderate cirrhosis (Child-Pugh grade B) were studied after a single 15 μg/kg bolus of alfentanil. Alfentanil plasma concentrations were measured by liquid chromatography-tandem mass spectrometry, and pupillary responses were measured with a Pupilscan II pupillometer. Alfentanil pharmacokinetics (plasma concentration, area under the plasma concentration-time curve from time zero to infinity [AUC∞(p)] and from time zero to 2 hours [AUC2(p)], apparent volume of distribution at steady state, clearance and terminal elimination half-life [t’/2(p)]) and miosis pseudo-kinetic parameters [AUC∞(miosis), AUC2(miosis), t½(miosis)] were determined using a noncompartmental analysis method. In six patients (three Child-Pugh grade A and three Child-Pugh grade B), antipyrine (measure of liver intrinsic activity) and D-sorbitol (measure of liver blood flow) tests were performed.

Results

A significant correlation was found between the alfentanil AUC∞(p) and AUC∞(miosis) (r = 0.6, p < 0.05) in cirrhotic patients. This correlation was even more significant if AUC determinations were limited to the first 2 hours after alfentanil administration (r = 0.9, p < 0.01). Statistically significant differences in pharmacokinetics and miosis pseudo-kinetic parameters were observed between cirrhotic patients and healthy volunteers from our previous experiment (historical control group). The correlations were significant between alfentanil clearance and antipyrine clearance (n = 6, r = 0.9, p < 0.05), alfentanil clearance and steady-state hepatic blood clearance [CLH(b)] measured by the D-sorbitol test (n = 6, r = 0.9, p<0.05).

Conclusion

Alfentanil pharmacokinetic parameters were correlated with miosis pseudo-kinetic parameters in cirrhotic patients. There was a significant decrease in pharmacokinetics and miosis pseudo-kinetics in cirrhotic patients compared with volunteers from the historical control group. Alfentanil-induced miosis has the advantage of being noninvasive and can be limited to miosis measurements during the first 2 hours after alfentanil administration in cirrhotic patients. We thus propose to substitute the AUC2(miosis) for alfentanil pharmacokinetics in cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Table II
Fig. 3

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17

    Article  PubMed  CAS  Google Scholar 

  2. Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998; 38: 389–430

    Article  PubMed  CAS  Google Scholar 

  3. Wandel C, Bocker R, Bohrer H, et al. Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br J Anaesth 1994; 73: 658–61

    Article  PubMed  CAS  Google Scholar 

  4. Wang JS, Backman JT, Taavitsainen P, et al. Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos 2000; 28: 959–65

    PubMed  CAS  Google Scholar 

  5. Kinirons MT, O’shea D, Kim RB, et al. Failure of erythromycin breath test to correlate with midazolam clearance as a probe of cytochrome P4503A. Clin Pharmacol Ther 1999; 66: 224–31

    Article  PubMed  CAS  Google Scholar 

  6. Galteau MM, Shamsa F. Urinary 6beta-hydroxycortisol: a validated test for evaluating drug induction or drug inhibition mediated through CYP3A in humans and in animals. Eur J Clin Pharmacol 2003; 59: 713–33

    Article  PubMed  CAS  Google Scholar 

  7. Benet LZ. There are no useful CYP3A probes that quantitatively predict the in vivo kinetics of other CYP3A substrates and no expectation that one will be found. Mol Interv 2005; 5: 79–83

    Article  PubMed  CAS  Google Scholar 

  8. Labroo RB, Thummel KE, Kunze KL, et al. Catalytic role of cytochrome P4503A4 in multiple pathways of alfentanil metabolism. Drug Metab Dispos 1995; 23: 490–6

    PubMed  CAS  Google Scholar 

  9. Kharasch ED, Thummel KE. Human alfentanil metabolism by cytochrome P450 3A3/4: an explanation for the interindividual variability in alfentanil clearance? Anesth Analg 1993; 76: 1033–9

    Article  PubMed  CAS  Google Scholar 

  10. Klees TM, Sheffels P, Dale O, et al. Metabolism of alfentanil by cytochrome P4503A (CYP3A) enzymes. Drug Metab Dispos 2005; 33: 303–11

    Article  PubMed  CAS  Google Scholar 

  11. Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev 1999; 51: 135–58

    PubMed  CAS  Google Scholar 

  12. Kharasch ED, Hoffer C, Walker A, et al. Disposition and miotic effects of oral alfentanil: a potential noninvasive probe for first-pass cytochrome P4503A activity. Clin Pharmacol Ther 2003; 73: 199–208

    Article  PubMed  CAS  Google Scholar 

  13. Phimmasone S, Kharasch ED. A pilot evaluation of alfentanil-induced miosis as a noninvasive probe for hepatic cytochrome P450 3A4 (CYP3A4) activity in humans. Clin Pharmacol Ther 2001; 70: 505–17

    Article  PubMed  CAS  Google Scholar 

  14. Kharasch ED, Walker A, Hoffer C, et al. Intravenous and oral alfentanil as in vivo probes for hepatic and first-pass cytochrome P450 3A activity: noninvasive assessment by use of pupillary miosis. Clin Pharmacol Ther 2004; 76: 452–66

    Article  PubMed  CAS  Google Scholar 

  15. Baririan N, Horsmans Y, Desager JP, et al. Alfentanil-induced miosis clearance as a liver CYP3A4 and 3A5 activity measure in healthy volunteers: improvement of experimental conditions. J Clin Pharmacol 2005; 45: 1434–41

    Article  PubMed  CAS  Google Scholar 

  16. Elbekai RH, Korashy HM, El-Kadi AO. The effect of liver cirrhosis on the regulation and expression of drug metabolizing enzymes. Curr Drug Metab 2004; 5: 157–67

    Article  PubMed  CAS  Google Scholar 

  17. Villeneuve JP, Pichette V. Cytochrome P450 and liver diseases. Curr Drug Metab 2004; 5: 273–82

    Article  PubMed  CAS  Google Scholar 

  18. Ferrier C, Marty J, Bouffard Y, et al. Alfentanil pharmacokinetics in patients with cirrhosis. Anesthesiology 1985; 62: 480–4

    Article  PubMed  CAS  Google Scholar 

  19. Tegeder I, Lotsch J, Geisslinger G. Pharmacokinetics of opioids in liver disease. Clin Pharmacokinet 1999; 37: 17–40

    Article  PubMed  CAS  Google Scholar 

  20. Shrestha R, McKinley C, Showalter R, et al. Quantitative liver function tests define the functional severity of liver disease in early-stage cirrhosis. Liver Transpl Surg 1997; 3: 166–73

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka E, Breimer DD. In vivo function tests of hepatic drug-oxidizing capacity in patients with liver disease. J Clin Pharm Ther 1997; 22: 237–49

    Article  PubMed  CAS  Google Scholar 

  22. Herold C, Heinz R, Radespiel-Troger M, et al. Quantitative testing of liver function in patients with cirrhosis due to chronic hepatitis C to assess disease severity. Liver 2001; 21: 26–30

    Article  PubMed  CAS  Google Scholar 

  23. Herold C, Regn S, Ganslmayer M, et al. Can quantitative tests of liver function discriminate between different etiologies of liver cirrhosis? Dig Dis Sci 2002; 47: 2669–73

    Article  PubMed  CAS  Google Scholar 

  24. Echizen H, Ohta Y, Shirataki H, et al. Effects of subchronic treatment with natural human interferons on antipyrine clearance and liver function in patients with chronic hepatitis. J Clin Pharmacol 1990; 30: 562–7

    PubMed  CAS  Google Scholar 

  25. Molino G, Cavanna A, Avagnina P, et al. Hepatic clearance of D-sorbitol: noninvasive test for evaluating functional liver plasma flow. Dig Dis Sci 1987; 32: 753–8

    Article  PubMed  CAS  Google Scholar 

  26. van Boxtel CJ, Wilson JT, Lindgren S, et al. Comparison of the half-life of antipyrine in plasma, whole blood and saliva of man. Eur J Clin Pharmacol 1976; 9: 327–32

    Article  PubMed  Google Scholar 

  27. Horning MG, Brown L, Nowlin J, et al. Use of saliva in therapeutic drug monitoring. Clin Chem 1977; 23: 157–64

    PubMed  CAS  Google Scholar 

  28. Baber N, Sweatman J. Clinical trials and good clinical practice. In: Griffin J, O’Grady J, editors. Textbook of pharmaceutical medicine. 4th ed. London: BMJ Books, 2002: 247–357

    Google Scholar 

  29. Chalon SA, Desager JP, Desante KA, et al. Effect of hepatic impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin Pharmacol Ther 2003; 73: 178–91

    Article  PubMed  CAS  Google Scholar 

  30. Mautz DS, Labroo R, Kharasch ED. Determination of alfentanil and noralfentanil in human plasma by gas chromatography-mass spectrometry. J Chromatogr B Biomed Appl 1994; 658: 149–53

    Article  PubMed  CAS  Google Scholar 

  31. Bower S, Sear JW, Roy RC, et al. Effects of different hepatic pathologies on disposition of alfentanil in anaesthetized patients. Br J Anaesth 1992; 68: 462–5

    Article  PubMed  CAS  Google Scholar 

  32. Huang YS, Lee SD, Deng JF, et al. Measuring lidocaine metabolite: monoethylglycinexylidide as a quantitative index of hepatic function in adults with chronic hepatitis and cirrhosis. J Hepatol 1993; 19: 140–7

    Article  PubMed  CAS  Google Scholar 

  33. MacGilchrist AJ, Birnie GG, Cook A, et al. Pharmacokinetics and pharmacodynamics of intravenous midazolam in patients with severe alcoholic cirrhosis. Gut 1986; 27: 190–5

    Article  PubMed  CAS  Google Scholar 

  34. Villeneuve JP, Thibeault MJ, Ampelas M, et al. Drug disposition in patients with HBsAg-positive chronic liver disease. Dig Dis Sci 1987; 32: 710–4

    Article  PubMed  CAS  Google Scholar 

  35. Bovili JG, Sebel PS, Blackburn CL, et al. The pharmacokinetics of alfentanil (R39209): a new opioid analgesic. Anesthesiology 1982; 57: 439–43

    Article  Google Scholar 

  36. Chauvin M, Bonnet F, Montembault C, et al. The influence of hepatic plasma flow on alfentanil plasma concentration plateaus achieved with an infusion model in humans: measurement of alfentanil hepatic extraction coefficient. Anesth Analg 1986; 65: 999–1003

    Article  PubMed  CAS  Google Scholar 

  37. Bower S, Hull CJ. Comparative pharmacokinetics of fentanyl and alfentanil. Br J Anaesth 1982; 54: 871–7

    Article  PubMed  CAS  Google Scholar 

  38. Branch RA. Drugs as indicators of hepatic function. Hepatology 1982; 2: 97–105

    Article  PubMed  CAS  Google Scholar 

  39. Branch RA, Shand DG. Propranolol disposition in chronic liver disease: a physiological approach. Clin Pharmacokinet 1976; 1: 264–79

    Article  PubMed  CAS  Google Scholar 

  40. Reichen J, Egger B, Ohara N, et al. Determinants of hepatic function in liver cirrhosis in the rat: multivariate analysis. J Clin Invest 1988; 82: 2069–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Pr Jean Cumps (UCL, School of Pharmacy) for statistical support. No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Horsmans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baririan, N., Van Obbergh, L., Desager, JP. et al. Alfentanil-Induced Miosis as a Surrogate Measure of Alfentanil Pharmacokinetics in Patients with Mild and Moderate Liver Cirrhosis. Clin Pharmacokinet 46, 261–270 (2007). https://doi.org/10.2165/00003088-200746030-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746030-00006

Keywords

Navigation