Skip to main content
Log in

A Novel Electrochemical Sensor Based on [Ru(NH3)6]Cl3 as a Redox Indicator for the Detection of G-G Mismatched DNA

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this paper, a novel electrochemical sensor was developed for the rapid detection of G-G mismatched DNA based on hexaammineruthenium(III) chloride ([Ru(NH3)6]Cl3) as a redox indicator. The sensor platform was constructed by immobilizing small molecules (NC-linker) on the gold electrode via amide bonds. The as-prepared NC-linker as the nucleic acids recognition molecule can interact with the G base of DNA. After the sensor was incubated with G-G mismatched DNA, the double-stranded DNA (dsDNA) acted as carriers of the signal tags-[Ru(NH3)6]Cl3, which resulted in a remarkable electrochemical signal. More binding of [Ru(NH3)6]Cl3 led to increases of the electrochemical signal. Other mismatched DNA produced only a low response, as well as complementary DNA. Thus G-G mismatched DNA can be easily discriminated from other mismatched and complementary DNA based on the sensor. Furthermore, the method was simple, rapid and repeatable for the detection of G-G mismatched DNA. The selective detection of target dsDNA was achieved by a relative current ratio of the target and control DNA. These results demonstrated that this strategy could provide great promise for the rapid and specific detection of other sequence-specific DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Mayr, M. Haider, R. Thünauer, T. Haselgrübler, G. J. Schütz, A. Sonnleitner, and J. Hesse, Biosens. Bioelectron., 2016, 78, 1.

    Article  CAS  PubMed  Google Scholar 

  2. Y. Teng, X. F. Jia, S. Zhang, J. B. Zhu, and E. Wang, Chem. Commun., 2016, 52, 1721.

    Article  CAS  Google Scholar 

  3. A. A. Lubin and K. W. Plaxco, Acc. Chem. Res., 2010, 43, 496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. E. E. Ferapontova, E. M. Olsen, and K. V. Gothelf, J. Am. Chem. Soc., 2008, 130, 4256.

    Article  CAS  PubMed  Google Scholar 

  5. J. Zhang, S. P. Song, L. Y. Zhang, L. H. Wang, H. P. Wu, D. Pan, and C. H. Fan, J. Am. Chem. Soc., 2006, 128, 8575.

    Article  CAS  PubMed  Google Scholar 

  6. H. Xie, C. Y. Zhang, and Z. Q. Gao, Anal. Chem., 2004, 76, 1611.

    Article  CAS  PubMed  Google Scholar 

  7. R. Y. La, K. W. Plaxco, and A. J. Heeger, Anal. Chem., 2007, 79, 229.

    Article  Google Scholar 

  8. A. Mugweru and J. F. Rusling, Anal. Chem., 2002, 74, 4044.

    Article  CAS  PubMed  Google Scholar 

  9. E. V. Suprun, S. A. Khmeleva, S. P. Radko, S. A. Kozin, A. I. Archakov, and V. V. Shumyantseva, Electrochem. Commun., 2016, 65, 53.

    Article  CAS  Google Scholar 

  10. A. M. Oliveira-Brett, L. A. D. Silva, and C. M. A. Brett, Langmuir, 2002, 18, 2326.

    Article  CAS  Google Scholar 

  11. K. Fricke, F. Harnisch, and U. Schröder, Energy Environ. Sci., 2008, 1, 144.

    Article  CAS  Google Scholar 

  12. C. M. Ruan, L. J. Yang, and Y. B. Li, Anal. Chem., 2002, 74, 4814.

    Article  CAS  PubMed  Google Scholar 

  13. K. Nakatani, S. Sando, and I. Saito, Nat. Biotechnol., 2001, 19, 51.

    Article  CAS  PubMed  Google Scholar 

  14. J. Li, H. P. He, X. Q. Peng, M. Huang, X. H. Zhang, and S. F. Wang, Anal. Sci., 2015, 7, 663.

    Article  Google Scholar 

  15. H. P. He, J. P. Xia, G. Chang, X. Q. Peng, Z. W. Lou, K. Nakatani, X. Zhou, and S. F. Wang, Biosens. Bioelectron., 2013, 42, 36.

    Article  CAS  PubMed  Google Scholar 

  16. H. P. He, J. P. Xia, X. Q. Peng, G. Chang, X. H. Zhang, Y. F. Wang, K. Nakatani, Z. W. Lou, and S. F. Wang, Biosens. Bioelectron., 2013, 49, 282.

    Article  CAS  PubMed  Google Scholar 

  17. H. P. He, X. Q. Peng, M. Huang, G. Chang, X. H. Zhang, and S. F. Wang, Analyst, 2014, 139, 5482.

    Article  CAS  PubMed  Google Scholar 

  18. C. X. Ma, W. Xu, W. R. A. Wichert, and P. W. Bohn, ACS Nano, 2016, 10, 3658.

    Article  CAS  PubMed  Google Scholar 

  19. H. W. Shu, W. Wen, H. Y. Xiong, X. H. Zhang, and S. F. Wang, Electrochem. Commun., 2013, 37, 15.

    Article  CAS  Google Scholar 

  20. S. Radhakrishnan and S. Paul, Sens. Actuators, B, 2007, 125, 60.

    Article  CAS  Google Scholar 

  21. Q. Wang, X. X. Gan, R. H. Zang, Y. Q. Chai, Y. L. Yuan, and R. Yuan, Biosens. Bioelectron., 2016, 81, 382.

    Article  CAS  PubMed  Google Scholar 

  22. E. Farjami, R. Campos, and E. E. Ferapontova, Langmuir, 2012, 28, 16218.

    Article  CAS  PubMed  Google Scholar 

  23. T. Bao, W. Wen, L. Shu, X. H. Zhang, and S. F. Wang, New J. Chem., 2016, 40, 6686.

    Article  CAS  Google Scholar 

  24. K. Nakatani, S. Sando, and I. Saito, Bioorg. Med. Chem., 2001, 9, 2381.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 21575035) and Foreign Science and Technology Cooperation Fund of Hubei province, China (2015BHE025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanping He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Huang, M., Li, J. et al. A Novel Electrochemical Sensor Based on [Ru(NH3)6]Cl3 as a Redox Indicator for the Detection of G-G Mismatched DNA. ANAL. SCI. 33, 585–590 (2017). https://doi.org/10.2116/analsci.33.585

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.585

Keywords

Navigation