Skip to main content
Log in

Development of a High-Density Microplasma Emission Source for a Micro Total Analysis System

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

To achieve a highly sensitive and onsite analysis of a small amount samples, a microplasma-based micro total analysis systems (μ-TAS) device was developed. A dielectric barrier discharge (DBD) that can generate a stable plasma at atmospheric pressure was generated in a microchip and used as the plasma source. The use of DBD suppresses the temperature rise of the electrodes and enables operation for long times because of a reduction of the electrode damage due to suppression of the current via dielectric interposing between the electrodes. It is expected that the analytical system can be miniaturized because helium plasma is generated in the microchannel contained in the microchip. Emissions from gaseous Cl, Br, and I were analyzed using the plasma source, and it was found that the detection limits for these analytes were 0.22, 0.18, and 0.14 ppm, respectively. The calibration curves for gaseous Cl, Br, and I were also plotted obtaining correlation coefficients of 0.975, 0.955 and 0.986, respectively, and showing good linearity for the developed plasma source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sugase and T. Tsuda, Bunseki Kagaku, 2002, 51, 429.

    Article  CAS  Google Scholar 

  2. M. H. H. Ensom, T. K. H. Chang, and P. Patel, Clin. Pharmacokinet., 2001, 40, 783.

    Article  CAS  PubMed  Google Scholar 

  3. R. Gorodischer, P. Burtin, Z. Verjee, P. Hwang, and G. Koren, Ther Drug Monit., 1997, 19, 637.

    Article  CAS  PubMed  Google Scholar 

  4. E. Yamada, K. Matsushita, M. Nakamura, Y. Fuse, S. Miki, H. Morita, and O. Shimada, Chem. Lett., 2005, 34, 772.

    Article  CAS  Google Scholar 

  5. P. N. Nge, C. I. Rogers, and A. T. Woolley, Chem. Rev., 2013, 113, 2550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, Anal. Chem., 2002, 74, 2623.

    Article  CAS  PubMed  Google Scholar 

  7. C. Ericson, J. Holm, T. Ericson, and S. Hjerten, Anal. Chem., 2000, 72, 81.

    Article  CAS  PubMed  Google Scholar 

  8. J. Qin, Y. Fung, D. Zhu, and B. Lin, J. Chromatogr. A, 2004, 102, 223.

    Article  Google Scholar 

  9. J. C. Sanders, Z. Huang, and J. P. Landers, Lab Chip, 2001, 1, 167.

    Article  CAS  PubMed  Google Scholar 

  10. J. Wang, B. Tian, and E. Sahlin, Anal. Chem., 1999, 71, 3901.

    Article  CAS  PubMed  Google Scholar 

  11. J. Wang, M. Pumera, M. P. Chatrahi, A. Rodrigez, S. Spillman, R. S. Marin, and S. M. Lunte, Electroanalysis, 2002, 14, 1251.

    Article  CAS  Google Scholar 

  12. K. Shigeta, H. Traub, U. Panne, A. Okino, L. Rottmann, and N. Jakubowskia, J. Anal. At. Spectrom., 2013, 28, 646.

    Article  CAS  Google Scholar 

  13. T. Takamatsu, H. Hirai, R. Sasaki, H. Miyahara, and A. Okino, IEEE Trans. Plasma Sci., 2013, 41, 119.

    Article  CAS  Google Scholar 

  14. T. Takamatsu, H. Miyahara, T. Azuma, and A. Okino, J. Toxicol. Sci., 2013, 39, 281.

    Article  Google Scholar 

  15. T. Oshita, H. Kawano, T. Takamatsu, H. Miyahara, and A. Okino, IEEE Trans. Plasma Sci., 2015, 43, 1987.

    Article  CAS  Google Scholar 

  16. T. Iwai, Y. Takahashi, H. Miyahara, and A. Okino, Anal. Sci., 1999, 29, 1141.

    Article  Google Scholar 

  17. T. Iwai, K. Kakegawa, M. Aida, H. Nagashima, T. Nagoya, M. Kanamori-Kataoka, H. Miyahara, Y. Seto, and A. Okino, Anal. Chem., 2015, 87, 5707.

    Article  CAS  PubMed  Google Scholar 

  18. J. C. T. Eijkel, H. Stoeri, and A. Manz, Anal. Chem., 1999, 71, 2600.

    Article  CAS  Google Scholar 

  19. T. Ichiki, T. Koidesawa, and Y. Horiike, Plasma Sources Sci. Technol., 2003, 12, S16.

    Article  CAS  Google Scholar 

  20. S. Maruo, SPIE Newsroom, 2012, 29.

    Google Scholar 

  21. M. Inada, D. Hiratsuka, J. Tatami, and S. Maruo, Jpn. J. Appl. Phys., 2009, 48, 06FK01.

    Article  Google Scholar 

  22. C. B. DiAntonio, K. G. Ewsuk, and D. Bencoe, J. Am. Ceram. Soc., 2005, 88, 2722.

    Article  CAS  Google Scholar 

  23. A. Okino, H. Ishizuka, I. Hirayama, Y. Nomura, and R. Shimada, Bunseki Kagaku, 1994, 43, 685.

    Article  CAS  Google Scholar 

  24. H. Eguchi, K. Nakamura, F. Endo, T. Nishiyama, T. Nakagawa, N. Seino, M. Sinoda, and K. Uchiyama, Bunseki Kagaku, 2005, 54, 869.

    Article  CAS  Google Scholar 

  25. H. Haraguchi, “Basic and Application for ICP Atomic Emission Spectrometry”, 1986, Kodansha Ltd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kakegawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakegawa, K., Harigane, R., Aida, M. et al. Development of a High-Density Microplasma Emission Source for a Micro Total Analysis System. ANAL. SCI. 33, 505–509 (2017). https://doi.org/10.2116/analsci.33.505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.505

Keywords

Navigation