Skip to main content
Log in

Ammonia Gas Detection under Various Humidity Conditions Using Waveguide Surface Plasmon Resonance Spectroscopy

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Analysis of NH3 gas under various humidity conditions was conducted using a waveguide surface plasmon resonance (SPR) sensor with dual sensing parts. Two pairs of Ag films/sensing polymer films were prepared separately on a waveguide core of BK-7 slide glass. Poly(acrylic acid) (PAA) and polyvinyl alcohol) (PVA) were used as sensing materials. A white light was guided through the core by illuminating the substrate edge, and the SPR property was investigated by observing the output light spectrum. The thicknesses of PAA and PVA films were adjusted to induce SPR at different wavelengths. PAA exhibited remarkable response against NH3 gas, but it also exhibited a strong dependence on humidity. In contrast, PVA responded to humidity but hardly responded to NH3 gas below 20 ppm. The dual sensing would allow us to conduct precise NH3 measurements under various humidity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Agranovich and D. L. Mills (ed.), “Surface Polaritons1982, North-Holland, Amsterdam.

    Google Scholar 

  2. S. Kawata (ed.), “Near-Field Optics and Surface Plasmon Polaritons”, 2001, Springer, Berlin.

    Google Scholar 

  3. V. M. Shalaev and S. Kawata (ed.), “Nanophotonics with Surface Plasmons”, 2007, Elsevier, Amsterdam.

    Google Scholar 

  4. T. Liebermann and W. Knoll, Colloids Surf., A, 2000, 171, 115.

    Article  CAS  Google Scholar 

  5. T. Kume, S. Hayashi, and K. Yamamoto, Jpn. J. Appl. Phys., 1993, 32, 3486.

    Article  CAS  Google Scholar 

  6. K. Shinbo, T. Ebe, F. Kaneko, K. Kato, and T. Wakamatsu, IEICE TRANS. ELECTRON., 2000, E83-C, 1081.

    Google Scholar 

  7. A. Baba, K. Wakatsuki, K. Shinbo, K. Kato, and F. Kaneko, J. Mater. Chem., 2011, 21, 16436.

    Article  CAS  Google Scholar 

  8. A. Vakil and N. Engheta, Science, 2011, 332, 1291.

    Article  CAS  PubMed  Google Scholar 

  9. I. Pockrand, A. Brillante, and D. Möbius, Chem. Phys. Lett., 1980, 69, 499.

    Article  CAS  Google Scholar 

  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature, 1998, 391, 667.

    Article  CAS  Google Scholar 

  11. K. Shinbo, S. Toyoshima, Y. Ohdaira, K. Kato, and F. Kaneko, Jpn. J. Appl. Phys., 2005, 44, 599.

    Article  CAS  Google Scholar 

  12. J. Feng, T. Okamoto, and S. Kawata, Opt. Lett., 2005, 30, 2302.

    Article  PubMed  Google Scholar 

  13. J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, Appl. Phys. Lett., 2008, 93, 051106.

    Article  Google Scholar 

  14. J. Homola (ed.), “Surface Plasmon Resonance Based Sensors”, 2006, Springer, Berlin.

    Google Scholar 

  15. M. Mitsushio and M. Higo, Anal. Sci., 2011, 27, 247.

    Article  CAS  PubMed  Google Scholar 

  16. T. Kawawaki, N. Shinjo, and T. Tatsuma, Anal. Sci., 2016, 32(3), 271.

    Article  CAS  PubMed  Google Scholar 

  17. K. Shinbo, H. Ishikawa, A. Baba, Y. Ohdaira, K. Kato, and F. Kaneko, Appl. Phys. Express, 2012, 5, 036603.

    Article  Google Scholar 

  18. K. Shinbo, Y. Ohdaira, A. Baba, K. Kato, and F. Kaneko, Mol. Cryst. Liq. Cryst., 2015, 622, 67.

    Article  CAS  Google Scholar 

  19. K. Shinbo, K. Takizawa, N. Obata, C. Lertvachirapaiboon, A. Baba, K. Kato, and F. Kaneko, Polym. Bull., 2016, 73, 2539.

    Article  CAS  Google Scholar 

  20. S. Sano, H. Mastubara, M. Hashizume, Y. Matsui, and S. Shiokawa, IEEJ Trans. Sens. Micromach. Jpn., 1997, 117, 627.

    Article  Google Scholar 

  21. R. Micheletto, K. Hamamoto, S. Kawai, and Y. Kawakami, Sens. Actuators, A, 2005, 119, 283.

    Article  CAS  Google Scholar 

  22. J. Dostalek, J. Tyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Pirkova, J. Kvor, and J. Schröfel, Sens. Actuators, B, 2001, 76, 8.

    Article  CAS  Google Scholar 

  23. T. Matsushita, T. Nishikawa, H. Yamashita, J. Kishimoto, and Y. Okuno, Sens. Actuators, B, 2008, 129, 881.

    Article  CAS  Google Scholar 

  24. K. Shinbo, K. Mizusawa, H. Takahashi, Y. Ohdaira, A. Baba, K. Kato, F. Kaneko, and N. Miyadera, Jpn. J. Appl. Phys., 2011, 50, 01BC15.

    Article  Google Scholar 

  25. R. Komai, H. Honda, A. Baba, K. Shinbo, K. Kato, and F. Kaneko, 7th International Symposium on Electrical Insulating Materials, 2014, VA27, 284.

  26. B. Timmer, W. Olthuis, and A. Berg, Sens. Actuators, B, 2005, 107, 666.

    Article  CAS  Google Scholar 

  27. B. Ding, M. Yamazakia, and S. Shiratori, Sens. Actuators, B, 2005, 106, 477.

    Article  CAS  Google Scholar 

  28. F. Barroso-Bujans, R. Serna, E. Sow, J.L.G. Fierro, and M. Veith, Langmuir, 2009, 25(16), 9094.

    Article  CAS  PubMed  Google Scholar 

  29. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, Thin Solid Films, 2000, 371, 218.

    Article  CAS  Google Scholar 

  30. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt., 1998, 37, 5271.

    Article  CAS  PubMed  Google Scholar 

  31. M. Hoerter, A. Oprea, N. Barsan, and U. Weimar, Sens. Actuators, B, 2008, 134, 743.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Shinbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinbo, K., Komai, R., Honda, H. et al. Ammonia Gas Detection under Various Humidity Conditions Using Waveguide Surface Plasmon Resonance Spectroscopy. ANAL. SCI. 33, 443–447 (2017). https://doi.org/10.2116/analsci.33.443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.443

Keywords

Navigation