Skip to main content
Log in

A Newly Designed Solid-Phase Extraction-type Collection Device for Precise Determination of Polycyclic Aromatic Hydrocarbons in Air

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A newly designed styrene-divinylbenzene copolymer adsorbent packed solid-phase extraction (SPE)-type collection device for the quantitative determination of airborne polycyclic aromatic hydrocarbons (PAHs) containing two to five rings is reported in this manuscript. This SPE-type collection device offers rapid, easy and quantitative elution of the analytes and easier reuse. A small collection device was initially developed for investigating the basic collection and elution performances of the adsorbent with respect to PAHs. The analytes were quantitatively collected on the adsorbent up to 3 m3 of air sampling at a sampling temperature of 35°C. The collected analytes were then completely eluted from the adsorbent by passing 3 mL of dichloromethane without carry-over of the analyte. During air collection, because no moisture was trapped on the adsorbent, the subsequent gas chromatography–mass spectrometric analysis was not influenced by moisture. Based on these successful performances, a wide-bore collection device was introduced for collecting larger air samples. After a quantitative investigation of the collection and elution performances of the widebore collection device, it device was successfully applied for precise determinations of PAHs in atmospheric air. Further application and employment of the device for the precise determination of semi-volatile organic compounds in environmental air samples is expected due to these excellent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Chen and C. M. Liao, Sci. Total Environ., 2006, 366, 112.

    Article  CAS  PubMed  Google Scholar 

  2. “Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, IARC Monogr. Eval. Carcinog. Risks Hum.”, International Agency for Research on Cancer, 2010, 92, 1.

  3. Polycyclic Aromatic Hydrocarbons, in Air Quality Guidelines for Europe”, World Health Organization Regional Office for Europe, Copenhagen, 2010, 92.

  4. S. O. Baek, R. A. Field, M. E. Goldstone, P. W. Kirk, J. N. Lester, and R. Perry, Water Air Soil. Poll., 1991, 60, 279.

    Article  CAS  Google Scholar 

  5. C. Venkataraman, S. Thomas, and P. Kulkarni, J. Aerosol. Sci., 1999, 30, 759.

    Article  CAS  Google Scholar 

  6. R. E. Cochran, N. Dongari, H. Jeong, J. Beránek, S. Haddadi, J. Shipp, and A. Kubátová, Anal. Chim. Acta, 2012, 740, 93.

    Article  CAS  PubMed  Google Scholar 

  7. D. Yamasaki, H. Kajiwara, M. Kirii, S. Ohira, and K. Toda, Bunseki Kagaku, 2015, 64, 571.

    Article  CAS  Google Scholar 

  8. Compendium Methods TO-13A, “Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC-MS)”, 1999, US Environmental Protection Agency, Cincinnati, OH.

    Google Scholar 

  9. T. F. Guerin, J. Environ. Monit., 1999, 1, 63.

    Article  CAS  PubMed  Google Scholar 

  10. S. K. Pandey, K.-H. Kim, and R. J. C. Brown, Trends Anal. Chem., 2011, 30, 1716.

    Article  CAS  Google Scholar 

  11. Y. Kobayashi, H. Okochi, H. Ogata, and T. Nagoya, Bunseki Kagaku, 2013, 62, 879.

    Article  CAS  Google Scholar 

  12. L. Kuusimäki, K. Peltones, P. Mutanen, and K. Savela, Ann. Occup. Hyg., 2003, 47, 389.

    PubMed  Google Scholar 

  13. J. J. Lee, K.-L. Huang, Y. Y. Yu, and M. S. Chen, Atoms. Environ., 2004, 38, 6185.

    Article  CAS  Google Scholar 

  14. Y. Araki, N. Tang, M. Ohno, T. Kameda, A. Toriba, and K. Hayakawa, J. Health Sci., 2009, 55, 77.

    Article  CAS  Google Scholar 

  15. NIOSH Manual of Analytical Methods (NMAM) Method 5515, “Polynuclear Aromatic Hydrocarbons by GC”, 4th ed., 1994, U.S. National Institute for Occupational Safety and Health.

    Google Scholar 

  16. A. Kobayashi, Y. Kojima, H. Okochi, and T. Nagoya, Bunseki Kagaku, 2010, 59, 645.

    Article  CAS  Google Scholar 

  17. K. Li, H. Li, L. Liu, Y. Hashi, T. Maeda, and J. M. Lin, J. Chromatogr. A, 2007, 1154, 74.

    Article  CAS  PubMed  Google Scholar 

  18. I. Ueta, M. Onikata, S. Mochizuki, K. Fuiimura, T. Sasaki, J. Aoki, and T. Maeda, J. Sep. Sci., 2015, 38, 3891.

    Article  CAS  PubMed  Google Scholar 

  19. I. Ueta, M. Onikata, K. Fujimura, T. Sasaki, T. Yoshimura, S. Mochizuki, and T. Maeda, Chromatography, 2016, 37, 9.

    Article  CAS  Google Scholar 

  20. I. Ueta, M. Onikata, K. Fujimura, T. Yoshimura, S. Narukami, S. Mochizuki, T. Sasaki, and T. Maeda, J. Sep. Sci., 2016, 39, 4202.

    Article  CAS  PubMed  Google Scholar 

  21. T. Spitzer, Anal. Chem., 1983, 55, 2226.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI (Grant Number 15K17875). One of the authors (I. U.) acknowledges support from Prof. Y. Saito, Toyohashi University of Technology and from S. Kawakubo of University of Yamanashi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Ueta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueta, I., Onikata, M., Fujimura, K. et al. A Newly Designed Solid-Phase Extraction-type Collection Device for Precise Determination of Polycyclic Aromatic Hydrocarbons in Air. ANAL. SCI. 33, 1175–1180 (2017). https://doi.org/10.2116/analsci.33.1175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.1175

Keywords

Navigation