Skip to main content
Log in

Cool Mist Scavenging of Gas-Phase Molecules

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The purpose of analytical extractions is to simplify sample matrix without losing analyte molecules. Here we present a technique of extracting volatile compounds by scavenging gas-phase molecules with tiny liquid droplets (<10 μm). A cool mist of the extracting solvent is generated by an ultrasonic transducer, transferred to the headspace of the sample chamber under atmospheric conditions, and pushed by a small pressure difference toward a condenser. By slowly passing over the sample, the microdroplets extract volatile species present in the sample headspace, and they coalesce in a cooled zone. The condensed liquid is collected for analysis by direct infusion mass spectrometry or chromatography coupled with mass spectrometry. Due to the high surface-to-volume ratio of the microdroplets, the mist depletes a great share of the volatile organics present in the headspace. Other advantages of cool mist scavenging include: selective extraction of gas-phase molecules, the extracting solvent can be miscible with the sample solvent, simplicity, high speed, and no requirement for heating that could potentially decompose the sample. In this study, cool mist scavenging was first tested on artificial samples containing esters. The relationship between the sample concentration and the extract concentration was verified theoretically and experimentally. Some of the possible confounding effects were tested and discussed. The technique was subsequently applied to qualitative analysis of selected complex samples in liquid and solid phase as well as an esterification reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Pawliszyn (ed.), “Comprehensive Sampling and Sample Preparation”, 1st ed., 2012, Academic Press, Cambridge.

    Google Scholar 

  2. S. Liu and P. K. Dasgupta, Anal. Chem., 1995, 67, 2042.

    Article  CAS  Google Scholar 

  3. H. Liu and P. K. Dasgupta, TrAC, Trends Anal. Chem., 1996, 75, 468.

    Article  Google Scholar 

  4. A. Jain and K. K. Verma, Anal. Chim. Acta, 2011, 706, 37.

    Article  CAS  PubMed  Google Scholar 

  5. L. Guo, N. Nawi, and H. K. Lee, Anal. Chem., 2016, 88, 8409.

    Article  CAS  PubMed  Google Scholar 

  6. S. Jahan, Q. Zhang, A. Pratush, H. Xie, H. Xiao, L. Fan, and C. Cao, Anal. Chem., 2016, 88, 10490.

    Article  CAS  PubMed  Google Scholar 

  7. B. Ervens, P. Herckes, G. Feingold, T. Lee, J. L. Collett Jr., and S. M. Kreidenweis, J. Atmos. Chem., 2003, 46, 239.

    Article  CAS  Google Scholar 

  8. P. Herckes, H. Chang, T. Lee, and J. L. Collett III, Water, Air, Soil Pollut., 2007, 787, 65.

    Article  Google Scholar 

  9. S. Banerjee, E. Gnanamani, X. Yan, and R. N. Zare, Analyst, 2017, 742, 1399.

    Article  Google Scholar 

  10. X. Chen, J. Cheng, and X. Yin, Proc. SPIE, 2003, 5058, 181.

    Article  Google Scholar 

  11. I. A. Kaipper, L. A. S. Madureira, and H. X. Corseuil, J. Braz. Chem. Soc., 2001, 72, 514.

    Article  Google Scholar 

  12. J. González-Sálamo, A. V. Herrera-Herrera, C. Fanali, and J. Hernández-Borges, LCGC Europe, 2016, 29, 180.

    Google Scholar 

  13. N. Yanase, H. Naganawa, T. Nagano, and J. Noro, Anal. Sci., 2011, 27, 171.

    Article  CAS  PubMed  Google Scholar 

  14. W. Henry, Philos. Trans. R. Soc. London, 1803, 93, 29.

    Article  Google Scholar 

  15. L. Wang, Z. Wang, H. Zhang, X. Li, and H. Zhang, Anal. Chim. Acta, 2009, 647, 72.

    Article  CAS  PubMed  Google Scholar 

  16. K. Chingin, Y. Cai, J. Liang, and H. Chen, Anal. Chem., 2016, 88, 5033.

    Article  CAS  PubMed  Google Scholar 

  17. T. Wang and R. Lenahan, Bull. Environ. Contam. Toxicol., 1984, 32, 429.

    Article  CAS  PubMed  Google Scholar 

  18. C.-H. Chang and P. L. Urban, Anal. Chem., 2016, 88, 8735.

    Article  CAS  PubMed  Google Scholar 

  19. D. Rood, J. Chromatogr. Sci., 1997, 35, 187.

    Article  Google Scholar 

  20. J.-B. Hu, S. Gunathilake, Y.-C. Chen, and P. L. Urban, RSC Adv., 2014, 4, 28865.

    Article  CAS  Google Scholar 

  21. A. Schumpe and W.-D. Deckwer, Biotechnol. Bioeng., 1979, 27, 1075.

    Article  Google Scholar 

  22. N. Segatin and C. Klofutar, Monatsh. Chem., 2000, 737, 131.

    Article  Google Scholar 

  23. R. P. Schwarzenbach, P. M. Gschwend, and D. M. Imboden, “Environmental Organic Chemistry”, 1993, Wiley, New York.

    Google Scholar 

  24. V. Jakhetia, R. Patel, P. Khatri, N. Pahuja, S. Garg, A. Pandey, and S. Sharma, J. Adv. Sci. Res., 2010, 7, 19.

    Google Scholar 

Download references

Acknowledgments

We thank Mr. Gurpur Rakesh D. Prabhu for discussions. We also acknowledge the Ministry of Science and Technology of Taiwan (Grant No.: MOST 104-2628-M-009-003-MY4) for financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel L. Urban.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PC., Dutkiewicz, E.P. & Urban, P.L. Cool Mist Scavenging of Gas-Phase Molecules. ANAL. SCI. 33, 1161–1167 (2017). https://doi.org/10.2116/analsci.33.1161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.1161

Keywords

Navigation