Skip to main content
Log in

Fast Determination of Toxic Arsenic Species in Food Samples Using Narrow-bore High-Performance Liquid-Chromatography Inductively Coupled Plasma Mass Spectrometry

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A new method for the speciation analysis of arsenic in food using narrow-bore high-performance liquid-chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) has been developed. Fast separation of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid was carried out in 7 min using an anion-exchange narrow-bore Nucleosil 100 SB column and 12 mM ammonium dihydrogen phosphate of pH 5.2 as the mobile phase, at a flow rate of 0.3 mL min–1. A PFA-ST micronebulizer jointed to a cyclonic spray chamber was used for HPLC-ICP-MS coupling. Compared with standard-bore HPLC-ICP-MS, the new method has provided higher sensitivity, reduced mobile-phase consumption, a lower matrix plasma load and a shorter analysis time. The achieved instrumental limits of detection were in the 0.3–0.4 ng As mL–1 range, and the precision was better than 3%. The arsenic compounds were efficiently (>80%) extracted from various food samples using a 1:5 methanol/water solution, with additional ultrasonic treatment for rice products. The applicability of this method was demonstrated by the analysis of several samples, such as seafood (fish, mussels, shrimps, edible algae) and rice-based products (Jasmine and Arborio rice, spaghetti, flour, crackers), including three certified reference materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Cohen, L. L. Arnold, B. D. Beck, A. S. Lewis, and M. Eldan, Crit. Rev. Toxicol., 2013, 43, 711.

    Article  CAS  PubMed  Google Scholar 

  2. T. Kaise, H. Yamauchi, Y. Horiguchi, T. Tani, S. Watanabe, T. Hirayama, and S. Fukui, Appl. Organomet. Chem., 1989, 3, 273.

    Article  CAS  Google Scholar 

  3. T. Kaise, S. Watanabe, and K. Itoh, Chemosphere, 1985, 74, 1327.

    Article  Google Scholar 

  4. B. K. Mandal and K. T. Suzuki, Talanta, 2002, 58, 201.

    Article  CAS  PubMed  Google Scholar 

  5. W. H. Organization, Preventing Disease through Healthy Environments, Exposure to Arsenic: a Major Public Health Concern, 2010.

    Google Scholar 

  6. M. Molin, S. M. Ulven, H. M. Meltzer, and J. Alexander, J. Trace Elem. Med. Biol., 2015, 37, 249.

    Article  Google Scholar 

  7. P. K. Sahoo and K. Kim, Geosci. J., 2013, 77, 107.

    Article  Google Scholar 

  8. S. Torres-Escribano, M. Leal, D. Vélez, and R. Montoro, Environ. Sci. Technol., 2008, 42, 3867.

    Article  CAS  PubMed  Google Scholar 

  9. M. A. Rahman and H. Hasegawa, Sci. Total Environ., 2011, 409, 4645.

    Article  CAS  PubMed  Google Scholar 

  10. S. Munera-Picazo, F. Burló, and Á. A. Carbonell-Barrachina, Food Addit. Contam. Part A, 2014, 37, 1358.

    Article  Google Scholar 

  11. B. Sadee, M. E. Foulkes, and S. J. Hill, J. Anal. At. Spectrom., 2015, 30, 102.

    Article  CAS  Google Scholar 

  12. M. J. Tomlinson, L. Lin, and J. A. Caruso, Analyst, 1995, 720, 583.

    Article  Google Scholar 

  13. G. Raber, N. Stock, P. Hanel, M. Murko, J. Navratilova, and K. A. Francesconi, Food Chem., 2012, 134, 524.

    Article  CAS  Google Scholar 

  14. S. Nookabkaew, N. Rangkadilok, C. Mahidol, G. Promsuk, and J. Satayavivad, J. Agric. Food Chem., 2013, 61, 6991.

    Article  CAS  PubMed  Google Scholar 

  15. T. Narukawa, K. Inagaki, T. Kuroiwa, and K. Chiba, Talanta, 2008, 77, 427.

    Article  CAS  PubMed  Google Scholar 

  16. W. Maher, S. Foster, F. Krikowa, E. Donner, and E. Lombi, Environ. Sci. Technol., 2013, 47, 5821.

    Article  CAS  PubMed  Google Scholar 

  17. T. Narukawa, E. Matsumoto, T. Nishimura, and A. Hioki, Anal. Sci., 2015, 31, 521.

    Article  CAS  PubMed  Google Scholar 

  18. D. Ellingson, R. Zywicki, and D. Sullivan, J. AOAC Int., 2014, 97, 1670.

    Article  CAS  PubMed  Google Scholar 

  19. S. Wangkarn and S. A. Pergantis, J. Anal. At. Spectrom., 2000, 15, 627.

    Article  CAS  Google Scholar 

  20. C. M. M. Santos, M. A. G. Nunes, I. S. Barbosa, G. L. Santos, M. C. Peso-Aguiar, M. G. A. Korn, E. M. M. Flores, and V. L. Dressler, Spectrochim. Acta, Part B, 2013, 86, 108.

    Article  CAS  Google Scholar 

  21. L. H. Reyes, J. L. G. Mar, G. M. M. Rahman, B. Seybert, T. Fahrenholz, and H. M. S. Kingston, Talanta, 2009, 78, 983.

    Article  CAS  PubMed  Google Scholar 

  22. S. Karthikeyan, S. Hirata, and C. S. P. Iyer, Int. J. Environ. Anal. Chem., 2004, 84, 573.

    Article  CAS  Google Scholar 

  23. A. V. Zmozinski, T. Llorente-Mirandes, J. F. Lopez-Sanchez, and M. M. da Silva, Food Chem., 2015, 173, 1073.

    Article  CAS  PubMed  Google Scholar 

  24. A. Leufroy, L. Noël, V. Dufailly, D. Beauchemin, and T. Guérin, Talanta, 2011, 83, 770.

    Article  CAS  PubMed  Google Scholar 

  25. Z. Wang, L. Nadeau, M. Sparling, and D. Forsyth, Food Anal. Methods, 2015, 8, 173.

    Article  Google Scholar 

  26. T. Llorente-Mirandes, J. Calderón, F. Centrich, R. Rubio, and J. F. López-Sánchez, Food Chem., 2014, 147, 377.

    Article  CAS  PubMed  Google Scholar 

  27. M. Grotti, A. Terol, and J. L. Todolf, TrAC, Trends Anal. Chem., 2014, 61, 92.

    Article  CAS  Google Scholar 

  28. H. Garraud, A. Woller, P. Fodor, and O. F. X. Donard, Analusis, 1997, 25, 25.

    CAS  Google Scholar 

  29. J. L. Todolff and M. Grotti, J. Chromatogr. A, 2010, 1217, 7428.

    Article  Google Scholar 

  30. A. D. Madsen, W. Goessler, S. N. Pedersen, and K. A. Francesconi, J. Anal. At. Spectrom., 2000, 15, 657.

    Article  CAS  Google Scholar 

  31. M. Grotti, F. Soggia, W. Goessler, S. Findenig, and K. A. Francesconi, Talanta, 2010, 80, 1441.

    Article  CAS  PubMed  Google Scholar 

  32. J. L. Guzmán Mar, L. Hinojosa Reyes, G. M. Mizanur Rahman, and H. M. S. Kingston, Agric. Food Chem., 2009, 57, 3005.

    Article  Google Scholar 

  33. T. Llorente-Mirandes, J. Calderón, J. F. López-Sánchez, F. Centrich, and R. Rubio, Pure Appl. Chem., 2012, 84, 225.

    Article  CAS  Google Scholar 

  34. J. J. Sloth, E. H. Larsen, and K. Julshamn, J. Agric. Food Chem., 2005, 53, 6011.

    Article  CAS  PubMed  Google Scholar 

  35. P. Allain, L. Jaunault, Y. Mauras, J. M. Mermet, and T. Delaporte, Anal. Chem., 1991, 63, 1497.

    Article  CAS  Google Scholar 

  36. G. Raber, K. A. Francesconi, K. J. Irgolic, and W. Goessler, Fresenius J. Anal. Chem., 2000, 367, 181.

    Article  CAS  PubMed  Google Scholar 

  37. M. Grotti, C. Lagomarsino, W. Goessler, and K. A. Francesconi, Environ. Chem., 2010, 7, 207.

    Article  CAS  Google Scholar 

  38. M. D’Amato, G. Forte, and S. Caroli, J. AOAC Int., 2004, 87, 238.

    Article  PubMed  Google Scholar 

  39. G.-X. Sun, P. N. Williams, A.-M. Carey, Y.-G. Zhu, C. Deacon, A. Raab, J. Feldmann, R. M. Islam, and A. A. Meharg, Environ. Sci. Technol., 2008, 42, 7542.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Urakami Foundation for Food and Food Culture Promotion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Grotti.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terol, A., Marcinkowska, M., Ardini, F. et al. Fast Determination of Toxic Arsenic Species in Food Samples Using Narrow-bore High-Performance Liquid-Chromatography Inductively Coupled Plasma Mass Spectrometry. ANAL. SCI. 32, 911–915 (2016). https://doi.org/10.2116/analsci.32.911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.911

Keywords

Navigation