Skip to main content
Log in

Shear-Driven Flow Ice Chromatography as a Possible Tool Probing Ice/Water Interface

  • Advancements in Instrumentation
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Although ice chromatography is a useful probe of ice interfaces, its low separation efficiency has often made difficult to access the ice/water interface. Coupling of this method with shear-driven flow chromatography, which has high separation potential, solves the problems involved in ice chromatography. This paper reports on shear-driven flow ice chromatographic instrumentation, and discusses the separation performance. Electrostatic separation of positively and negatively charged dyes is demonstrated with an OH--doped ice plate as a stationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Okada and Y. Tasaki, Anal. Bioanal. Chem., 2010, 396, 221.

    Article  CAS  PubMed  Google Scholar 

  2. Y. Tasaki and T. Okada, Anal. Chem., 2006, 78, 4155.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Tasaki and T. Okada, J. Chromatogr. A, 2008, 1189, 72.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Tasaki and T. Okada, Anal. Sci., 2009, 25, 177.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Tasaki and T. Okada, Anal. Chem., 2011, 83, 9593.

    Article  CAS  PubMed  Google Scholar 

  6. T. Shamoto, Y. Tasaki, and T. Okada, J. Am. Chem. Soc., 2010, 132, 13135.

    Article  CAS  PubMed  Google Scholar 

  7. S. Takahashi, M. Harada, and T. Okada, Anal. Methods, 2016, 8, 105.

    Article  CAS  Google Scholar 

  8. Y. Tasaki and T. Okada, J. Phys. Chem. C, 2008, 112, 2618.

    Article  CAS  Google Scholar 

  9. J. R. Blackford, J. Phys. D: Appl. Phys., 2007, 40, R355.

    Article  CAS  Google Scholar 

  10. V. F. Petrenko and R. W. Whitworth, “Physics of Ice”, 1999, Oxford University Press, New York.

    Google Scholar 

  11. T. Bartels-Rausch, H.-W. Jacobi, T. F. Kahan, J. L. Thomas, E. S. Thomson, J. P. D. Abbatt, M. Ammann, J. R. Blackford, H. Bluhm, C. Boxe, F. Domine, M. M. Frey, I. Gladich, M. I. Guzmán, D. Heger, T. Huthwelker, P. Klán, W. F. Kuhs, M. H. Kuo, S. Maus, S. G. Moussa, V. F. McNeil, J. T. Newberg, J. B. C. Pettersson, M. Roeselo, and J. R. Sadeau, Atmos. Chem. Phys. Discuss., 2012, 12, 30409.

    Google Scholar 

  12. J. E. MacNair, K. C. Lewis, and J. W. Jorgenson, Anal. Chem., 1997, 69, 983.

    Article  CAS  PubMed  Google Scholar 

  13. B. Wei, B. J. Rogers, and M. J. Wirth, J. Am. Chem. Soc., 2012, 134, 10780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D. Clicq, K. Pappaert, S. Vankrunkelsven, N. Vervoort, G. V. Baron, and G. Desmet, Anal. Chem., 2004, 76, 431A.

    Article  Google Scholar 

  15. W. De Malsche, D. Clicq, H. Eghbali, V. Fekete, H. Gardeniers, and G. Desmet, Lab. Chip, 2006, 6, 1322.

    Article  PubMed  Google Scholar 

  16. G. Desmet and G. V. Baron, J. Chromatogr. A, 1999, 855, 57.

    Article  CAS  PubMed  Google Scholar 

  17. G. Desmet, N. Vervoort, D. Clicq, and G. V. Baron, J. Chromatogr. A, 2001, 924, 111.

    Article  CAS  PubMed  Google Scholar 

  18. G. Desmet, N. Vervoort, D. Clicq, A. Huau, P. Gzil, and G. V. Baron, J. Chromatogr. A, 2002, 948, 19.

    Article  CAS  PubMed  Google Scholar 

  19. B. R. Munson, T. H. Okiishi, W. W. Huebsch, and A. P. Rohmayer, “Fundamentals of Fluid Mechanics”, 7th ed., 2013, John Wiley & Sons, New York.

    Google Scholar 

  20. C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, Talanta, 2002, 56, 365.

    Article  CAS  PubMed  Google Scholar 

  21. H. Watanabe, T. Otsuka, M. Harada, and T. Okada, J. Phys. Chem. C, 2014, 118, 15723.

    Article  CAS  Google Scholar 

  22. J. Drzymala, Z. Sadowski, L. Holysz, and E. Chibowski, J. Colloid Interface Sci., 1999, 220, 229.

    Article  CAS  PubMed  Google Scholar 

  23. M. K. Goftar, K. Moradi, and N. M. Kor, Eur. J. Exp. Biol., 2014, 4, 72.

    Google Scholar 

  24. N. O. Mchedlov-Petrosyan and Y. V. Kholin, Russ. J. Appl. Chem., 2004, 77, 414

    Article  CAS  Google Scholar 

  25. J. G. Duman, Annu. Rev. Physiol., 2001, 63, 327.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-aid for Scientific Research from the Japan Society for Promotion of Science. The authors thank Prof. Desmet for his helpful discussions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Okada.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, M., Harada, M., Hibara, A. et al. Shear-Driven Flow Ice Chromatography as a Possible Tool Probing Ice/Water Interface. ANAL. SCI. 32, 805–808 (2016). https://doi.org/10.2116/analsci.32.805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.805

Keywords

Navigation