Skip to main content
Log in

Development of a Portable Surface Plasmon Resonance Sensor with Multi-Sensing Points Based on the Linear CCD Sensor

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A portable-type surface plasmon resonance (SPR) sensor, composed from a new optical system for multi-sensing, has been developed to apply to environment analysis, clinical diagnosis etc., where many samples are desired to be analyzed at high throughput. The optical system of the sensor consists of a light-emitting diode, a pair of cylindrical lenses, a pair of collimator lenses, a correction lens, a prism, a polarizer and a linear CCD sensor with 2048 pixels. Reflected light from a sensor chip of the width of 6 mm at a certain incident angle was detected by ca. 618 pixels of the linear CCD sensor as an SPR sensor signal. An SPR sensor signal at a specified incident angle is controllable for optimization by adjusting the position of the CCD sensor. A sensor chip having a 30-stripe linear pattern (100 μm width/stripe) was prepared. The spatial resolution as well as the performance of the sensor were evaluated by using sucrose solutions. As a result, the acquisition of SPR sensor signals from 30 sensing points was successfully achieved with a spatial resolution of 100 μm (distance between 2 sensing points). A lower detection limit of ca. 3.2 − 5.5 × 10−5 RIU with a standard deviation of ±4.5% was obtained by averaging the signals from 6–7 pixels of the CCD sensor per one sensing stripe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Homola, Chem. Rev., 2008, 108, 462.

    Article  CAS  PubMed  Google Scholar 

  2. H. Bai, R. Wang, B. Hargis, H. Lu, and Y. Li, Sensors, 2012, 12, 12506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C. Esseghaier, A. Ng, and M. Zourob, Biosens. Bioelectron., 2013, 41, 335.

    Article  CAS  PubMed  Google Scholar 

  4. J. Luczkowiak, S. Sattin, I. SutkeviciUte, J. J. Reina, M. Sanchez-Navarro, M. Thépaut, L. Martinez-Prats, A. Daghetti, F. Fieschi, R. Delgado, A. Bernardi, and J. Rojo, Bionconjugate Chem., 2011, 22, 1354.

    Article  CAS  Google Scholar 

  5. J. Dostalek, J. Pribyl, J. Homola, and P. Skladal, Anal. Bioanal. Chem., 2007, 389, 1841.

    Article  CAS  PubMed  Google Scholar 

  6. M. Piliarik, M. Vala, I. Tichy, and J. Homola, Biosens. Bioelectron., 2009, 24, 3430.

    Article  CAS  PubMed  Google Scholar 

  7. M. Vala, K. Chadt, M. Piliatik, and J. Homola, Sens. Actuators, B, 2010, 148, 544.

    Article  CAS  Google Scholar 

  8. F. Fernandez, K. Hegnerova, M. Piliarik, and F. Sanchez-Baeza, Biosens. Bioelectron., 2010, 26, 1231.

    Article  CAS  PubMed  Google Scholar 

  9. J. Dostalek and J. Homola, Sens. Actuators, B, 2008, 129, 303.

    Article  CAS  Google Scholar 

  10. J. Dostalek, J. Homola, and M. Miler, Sens. Actuators, B, 2005, 107, 154.

    Article  CAS  Google Scholar 

  11. M. Piliarik, L. Parova, and J. Homola, Biosens. Bioelectron., 2009, 24, 1399.

    Article  CAS  PubMed  Google Scholar 

  12. T. M. Chinowsky, S. D. Soelberg, P. Baker, N. R. Swanson, P. Kauffman, A. Mactutis, M. S. Grow, R. Atmar, S. S. Yee, and C. E. Furlong, Biosens. Bioelectron., 2007, 22, 2268.

    Article  CAS  PubMed  Google Scholar 

  13. C. Puttharugsa, T. WangKam, N. Huangkamhang, O. Gajanandana, O. Himananto, B. Sutapun, R. Amarit, A. Somboonkaew, and T. Srikhirin, Biosens. Bioelectron., 2011, 26, 2341.

    Article  CAS  PubMed  Google Scholar 

  14. F. Bardin, A. Bellemain, G. Roger, and M. Canva, Biosens. Bioelectron., 2009, 24, 2100.

    Article  CAS  PubMed  Google Scholar 

  15. A. Hemmi, R. Mizumura, R. Kawanisi, H. Nakajima, H. Zeng, K. Uchiyama, N. Kaneki, and T. Imato, Sensors, 2013, 13, 801.

    Article  PubMed  PubMed Central  Google Scholar 

  16. E. Mauriz, A. Calle, A. Montoya, and L. M. Lechuga, Talanta, 2006, 69, 359.

    Article  CAS  PubMed  Google Scholar 

  17. I. R. Hooper, M. Rooth, and J. R. Sambles, Biosens. Bioelectron., 2009, 25, 411.

    Article  CAS  PubMed  Google Scholar 

  18. P. Zhang, L. Liu, Y. He, Z. Shen, J. Guo, Y. Ji, and H. Ma, Appl. Opt., 2014, 53, 6037.

    Article  PubMed  Google Scholar 

  19. A. Hemmi, T. Imato, Y. Aoki, M. Sato, N. Soh, Y. Asano, C. Akasaka, S. Okutani, S. Ohkubo, N. Kaneki, K. Shimada, T. Eguchi, and T. Oinuma, Sens. Actuators, B, 2005, 108, 893.

    Article  CAS  Google Scholar 

  20. H. Nakajima, Y. Harada, Y. Asano, T. Nakagama, K. Uchiyama, T. Imato, N. Soh, and A. Hemmi, Talanta, 2006, 708, 419.

    Article  Google Scholar 

  21. N. Kaneki, T. Imato, K. Uchiyama, K. Shimada, Y. Asano, A. Hemmi, T. Oinuma, K. Ito, and Y. Ishikawa, Japanese Patent, 2010, 4472376.

    Google Scholar 

  22. http://www.datasheet-japan.com/datasheet-html/H/E/7/HE7601SG_Hitachi.pdf.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshihiko Imato or Akihide Hemmi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, J., Furui, K., Nakajima, H. et al. Development of a Portable Surface Plasmon Resonance Sensor with Multi-Sensing Points Based on the Linear CCD Sensor. ANAL. SCI. 32, 673–679 (2016). https://doi.org/10.2116/analsci.32.673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.673

Keywords

Navigation