Skip to main content
Log in

Quantitative Analysis of Trace Elements in Silicate Glass Sample by LA-ICP-QMS/QMS with an ORC: Silicon as the Matrix of Calibrating Solutions and the Internal Standard for Measurement

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A strategy was presented for quantitative analysis of trace elements in a glass sample by laser ablation inductively coupled plasma tandem quadrupole mass spectrometry (LA-ICP-QMS/QMS) with an octapole reaction cell (ORC). Silicon in the glass was used as the internal standard as well as the matrix for making the calibrating solutions. Sample aerosols generated by the laser ablation system were introduced into the dual pass spray chamber through the make-up gas port. Calibrating solutions were nebulized into the spray chamber using a microflow nebulizer. The silicon matrix-matched calibrating solutions produced a calibration curve capable for the quantitative analysis of trace elements in a silicate glass sample, NIST SRM 612. The analytical results agreed with the certified values, taking into consideration their expanded uncertainties. The detection limits for Cr, Mn, Fe, Ni, Cu, As, Sr, Ag, Cd, Sb. Ba, and Pb, were respectively 0.3, 0.08. 0.5, 0.4, 0.19, 1.1, 0.1, 0.02, 0.03, 0.025, 0.09, and 0.07 μg g−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Russo, X. L. Mao, H. C. Liu, J. Gonzalez, and S. S. Mao, Talanta, 2002, 57, 425.

    Article  CAS  PubMed  Google Scholar 

  2. D. Gunther, H. R. Kuhn, and M. Guillong, Geochim. Cosmochim. Acta, 2005, 69, A372.

    Google Scholar 

  3. J. S. Becker, A. Matusch, and B. Wu, Anal. Chim. Acta, 2014, 835, 1.

    Article  CAS  PubMed  Google Scholar 

  4. D. Pozebon, G. L. Scheffler, V. L. Dressler, and M. A. G. Nunes, J. Anal. At. Spectrom., 2014, 29, 2204.

    Article  CAS  Google Scholar 

  5. N. Miliszkiewicz, S. Walas, and A. Tobiasz, J. Anal. At. Spectrom., 2015, 30, 327.

    Article  CAS  Google Scholar 

  6. A. Limbeck, P. Galler, M. Bonta, G. Bauer, W. Nischkauer, and F. Vanhaecke, Anal. Bioanal. Chem., 2015, 407, 6593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. S. Liu, Z. C. Hu, S. Gao, D. Gunther, J. Xu, C. G. Gao, and H. H. Chen, Chem. Geol., 2008, 257, 34.

    Article  CAS  Google Scholar 

  8. M. Guillong, K. Hametner, E. Reusser, S. A. Silson, and D. Gunther, Geostand. Geoanal. Res., 2005, 29, 315.

    Article  CAS  Google Scholar 

  9. K. Smith, T. Trejos, R. J. Watling, and J. Almirall, At. Spectrosc., 2006, 27, 69.

    CAS  Google Scholar 

  10. T. Ulrich and B. S. Kamber, Geostand. Geoanal. Res., 2013, 37, 169.

    Article  CAS  Google Scholar 

  11. Z. C. Hu, Y. S. Hu, L. Chen, L. Zhou, M. Li, K. Q. Zong, L. Y. Zhu, and S. Gao, J. Anal. At. Spectrom., 2011, 26, 425.

    Article  CAS  Google Scholar 

  12. M. Ohata, D. Tabersky, R. Glaus, J. Koch, B. Hattendorf, and D. Gunther, J. Anal. At. Spectrom., 2014, 29, 1345.

    Article  CAS  Google Scholar 

  13. N. J. G. Pearce, J. Quatern. Sci., 2014, 29, 627.

    Article  Google Scholar 

  14. H. Zhou, Z. Wang, Y. Zhu, Q. Li, H. J. Zou, H. Y. Qu, Y. R. Chen, and Y. P. Du, Spectrochim. Acta B, 2013, 90, 55.

    Article  CAS  Google Scholar 

  15. B. Grautuze, M. Blet-Lemarquand, and J.-N. Barrandon, J. Radioanal. Nucl. Chem., 2001, 247, 645.

    Article  Google Scholar 

  16. J. T. van Elteren, N. H. Tennent, and V. S. Selih, Anal. Chim. Acta, 2009, 644, 1.

    Article  PubMed  Google Scholar 

  17. M. Bertini, A. Izmer, F. Vanhaecke, and E. M. Krupp, J. Anal. At. Spectrom., 2013, 28, 77.

    Article  CAS  Google Scholar 

  18. J. E. Gagnon, B. J. Fryer, I. M. Samson, and A. E. Williams-Jones, J. Anal. At. Spectrom., 2008, 23, 1529.

    Article  CAS  Google Scholar 

  19. L. Halicz and D. Gunther, J. Anal. At. Spectrom., 2004, 19, 1539.

    Article  CAS  Google Scholar 

  20. D. Gunther, H. Cousin, B. Magyar, and I. Leopold, J. Anal. At. Spectrom., 1997, 12, 165.

    Article  Google Scholar 

  21. J. Leach, L. A. Allen, D. B. Aeschliman, and R. S. Houk, Anal. Chem., 1999, 71, 440.

    Article  CAS  Google Scholar 

  22. C. Pickhardt, A. V. Izmer, M. V. Zoriy, D. Schaumloffel, and J. S. Becker, J. Mass Spectrom., 2006, 248, 136.

    Article  CAS  Google Scholar 

  23. C. O’Connor, B. L. Sharp, and P. Evans, J. Anal. At. Spectrom., 2006, 21, 556.

    Article  Google Scholar 

  24. M. Aramendia, M. Resano, and F. Vanhaecke, J. Anal. At. Spectrom., 2010, 25, 390.

    Article  CAS  Google Scholar 

  25. D. Pozebon, V. L. Dressler, M. F. Mesko, A. Matsuch, and J. S. Becker, J. Anal. At. Spectrom., 2010, 25, 1739.

    Article  CAS  Google Scholar 

  26. H.-R. Kuhn, M. Guillong, and D. Gunther, Anal. Bioanal. Chem., 2004, 378, 1069.

    Article  CAS  PubMed  Google Scholar 

  27. The Japan Society for Analytical Chemistry, “Kagaku Binran (Chemical Handbook, in Japanese)”, ed. K. Hata, 1984, Maruzen, Tokyo, I–22.

  28. N. J. G. Pearce, W. T. Perkins, J. A. Westgate, M. P. Gorton, S. E. Jackson, C. R. Neal, and S. P. Chenery, Geostand. Newslett., 1997, 21, 115.

    Article  CAS  Google Scholar 

  29. Z. Li, Z. Hu, Y. Liu, S. Gao, M. Li, K. Zong, H. Chen, and S. Hu, Chem. Geol., 2015, 400, 11.

    Article  CAS  Google Scholar 

  30. D. B. Aeschliman, S. J. Bajic, D. P. Baldwin, and R. S. Houk, J. Anal. At. Spectrom., 2003, 18, 872.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author appreciates the technical support for use of the ICP-QMS/QMS system from Mr. Yasuyuki Shikamori (Agilent Technologies Japan).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y. Quantitative Analysis of Trace Elements in Silicate Glass Sample by LA-ICP-QMS/QMS with an ORC: Silicon as the Matrix of Calibrating Solutions and the Internal Standard for Measurement. ANAL. SCI. 32, 1237–1243 (2016). https://doi.org/10.2116/analsci.32.1237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.1237

Keywords

Navigation