Skip to main content
Log in

A Rhodamine-based Dual Chemosensor for the Simultaneous Detection of Fe3+ and Cu2+

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A Rhodamine-based dual chemosensor LI for simultaneously detecting Fe3+ and Cu2+ was designed and synthesized. The spectroscopic properties of LI were analyzed, and its recognition mechanism was speculated. We found that the addition of Fe3+ induced a great fluorescence enhancement, while Cu2+ induced a strong UV-Vis absorption enhancement. The results revealed that LI was highly selective for recognizing Fe3+ and Cu2+ in UV-Vis spectroscopy in CH3OH-H2O (1/1, v/v, pH 7.2) with the interference of other metal ions. A good linear relationship between the fluorescence intensities of LI and the concentration of Fe3+, as well as the UV-Vis absorption intensities of LI and the concentration of Cu2+ was observed, respectively. The detection limit was 9.2 × 10−8 M (5.5 μg/L) for Fe3+ and 3.8 × 10−8 M (2.4 μg/L) for Cu2+, respectively. The detection capacity for targeted metal ions of Fe3+ and Cu2+ were studied, which are less than 5 min. Job's plot method for LI with Fe3+ and ESI-MS for LI with Cu2+ indicated a 1:1 stoichiometry in the complex. The results may provide an effective strategy for the design of new dual chemosensors for the rapid detection of targeted metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sikdar, S. S. Panja, P. Biswas, and S. Roy, J. Fluoresc., 2012, 22, 443.

    Article  CAS  PubMed  Google Scholar 

  2. H. Q. Chen, A. N. Liang, L. Wang, Y. Liu, and B. B. Qian, Microchim. Acta, 2009, 164, 453.

    Article  CAS  Google Scholar 

  3. P. S. Donnelly, Z. Xiao, and A. G. Wedd, Curr. Opin. Chem. Biol., 2007, 11, 128.

    Article  CAS  PubMed  Google Scholar 

  4. R. M. Rasia, C. W. Bertoncini, D. Marsh, W. Hoyer, D. Cherny, M. Zweckstetter, C. Griesinger, T. M. Jovin, and C. O. Fernández, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 4294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Strausak, J. F. B. Mercer, H. H. Dieter, W. Stremmel, and G. Multhaup, Brain Res. Bull., 2001, 55, 175.

    Article  CAS  PubMed  Google Scholar 

  6. S. Bae and J. Tae, Tetrahedron Lett., 2007, 48, 5389.

    Article  CAS  Google Scholar 

  7. C. E. Sabel, J. M. Neureuther, and S. Siemann, Anal. Biochem., 2010, 397, 218.

    Article  CAS  PubMed  Google Scholar 

  8. M. E. Mahmoud, I. M. M. Kenawy, M. M. A. H. Hafez, and R. R. Lashein, Desalination, 2010, 250, 62.

    Article  CAS  Google Scholar 

  9. A. A. Alqadami, M. A. Abdalla, Z. A. AlOthman, and K. Omer, Int. J. Env. Res. Pub. He., 2013, 10, 361.

    Article  CAS  Google Scholar 

  10. A. Gamage and F. Shahidi, Food Chem., 2007, 104, 989.

    Article  CAS  Google Scholar 

  11. L. Pérez-Marín, E. Otazo-Sánchez, G. Macedo-Miranda, P. Avila-Pérez, C. J. Alonso, and H. López-Valdivia, Analyst, 2000, 125, 1787.

    Article  Google Scholar 

  12. F. H. Wang, C. W. Cheng, L. C. Duan, W. Lei, M. Z. Xia, and F. Y. Wang, Sens. Actuators, B, 2015, 206, 679.

    Article  CAS  Google Scholar 

  13. H. Q. Chen and J. C. Ren, Analyst, 2012, 137, 1899.

    Article  CAS  PubMed  Google Scholar 

  14. Q. Hu, Y. Liu, Z. Li, R. Wen, Y. Gao, Y. Bei, and Q. Zhu, Tetrahedron Lett., 2014, 55, 4912.

    Article  CAS  Google Scholar 

  15. J. F. Zhang and J. S. Kim, Anal. Sci., 2009, 25, 1271.

    Article  PubMed  Google Scholar 

  16. S. S. M. Hassan, M. S. El-Shahawi, A. M. Othman, and M. A. Mossad, Anal. Sci., 2005, 21, 673.

    Article  CAS  PubMed  Google Scholar 

  17. V. Dujols, F. Ford, and A. W. Czarnik, J. Am. Chem. Soc., 1997, 119, 7386.

    Article  CAS  Google Scholar 

  18. Z. Yang, M. She, B. Yin, J. Cui, Y. Zhang, W. Sun, J. Li, and Z. J. Shi, Organ. Chem., 2011, 77, 1143.

    Article  Google Scholar 

  19. A. J. Weerasinghe, C. Schmiesing, S. Varaganti, G. Ramakrishna, and E. Sinn, J. Phys. Chem. B, 2010, 114, 9413.

    Article  CAS  PubMed  Google Scholar 

  20. X. Chen, M. J. Jou, H. Lee, S. Kou, J. Lim, S. W. Nam, S. Park, K. M. Kim, and J. Yoon, Sens. Actuators, B, 2009, 137, 597.

    Article  CAS  Google Scholar 

  21. A. Sangita, G. Abhijit, M. Sandip, S. Archya, C. Ansuman, S. M. Jesús, L. Sisir, and D. Debasis, Dalton Trans., 2014, 43, 7747.

    Article  Google Scholar 

  22. L. Ma, J. Qian, H. Tian, M. Lan, and W. Zhang, Analyst, 2012, 137, 5046.

    Article  CAS  PubMed  Google Scholar 

  23. M. Wang, F. Yan, Y. Zou, L. Chen, N. Yang, and X. Zhou, Sens. Actuators, B, 2014, 192, 512.

    Article  CAS  Google Scholar 

  24. G. Zhou, H. Wang, Y. Ma, and X. Chen, Tetrahedron, 2013, 14, 867.

    Article  Google Scholar 

  25. S. K. Sahoo, D. Sharma, R. K. Bera, G. Crisponi, and J. F. Callan, Chem. Soc. Rev., 2012, 41, 7195.

    Article  CAS  PubMed  Google Scholar 

  26. U. A. Fegade and S. K. Sahoo, Anal. Chim. Acta, 2015, 872, 63.

    Article  CAS  PubMed  Google Scholar 

  27. J. Nandre, S. Patil, V. Patil, F. Yu, L. Chen, S. Sahoo, T. Prior, C. Redshaw, and U. Patil, Biosens. Bioelectron., 2014, 61, 612.

    Article  CAS  PubMed  Google Scholar 

  28. M. Sonawane, S. K. Sahoo, J. Singh, N. Singh, C. P. Sawant, and A. Kuwar, Inorg. Chim. Acta, 2015, 438, 37.

    Article  CAS  Google Scholar 

  29. S. K. Sahoo, D. Sharma, A. Moirangthem, A. Kuba, R. Thomas, R. Kumar, A. Kuwar, H. J. Choi, and A. Basu, J. Lumin., 2016, 172, 297.

    Article  CAS  Google Scholar 

  30. A. Kuwar, R. Patil, A. Singh, S. K. Sahoo, J. Marek, and N. Singh, J. Mater. Chem. A, 2015, 3, 453.

    Article  CAS  Google Scholar 

  31. Y. B. Waqh, A. Kuwar, S. K. Sahoo, J. Gallucci, and D. S. Dalal, RSC Adv., 2015, 5, 45528.

    Article  Google Scholar 

  32. U. Fegade, S. K. Sahoo, S. Attarde, N. Singh, and A. Kuwar, Sens. Actuators, B, 2014, 202, 924.

    Article  CAS  Google Scholar 

  33. S. K. Srivastava, V. K. Gupta, and S. Jain, Anal. Chem., 1996, 68, 1272.

    Article  CAS  PubMed  Google Scholar 

  34. V. K. Gupta, A. K. Jain, L. P. Singh, and U. Khurana, Anal. Chim. Acta, 1997, 355, 33.

    Article  CAS  Google Scholar 

  35. V. K. Gupta, A. K. Singh, S. Mehtab, and B. Gupta, Anal. Chim. Acta, 2006, 566, 5.

    Article  CAS  Google Scholar 

  36. V. K. Gupta, A. K. Singh, M. A. Khayat, and B. Gupta, Anal. Chim. Acta, 2007, 590, 81.

    Article  CAS  PubMed  Google Scholar 

  37. S. K. Srivastava, V. K. Gupta, and S. Jain, Analyst, 1995, 120, 495.

    Article  CAS  Google Scholar 

  38. A. K. Jain, V. K. Gupta, L. P. Singh, and U. Khurana, Analyst, 1997, 122, 583.

    Article  CAS  Google Scholar 

  39. V. K. Gupta, R. Prasad, P. Kumar, and R. Mangla, Anal. Chim. Acta, 2000, 420, 19.

    Article  CAS  Google Scholar 

  40. V. K. Gupta, S. Jain, and S. Chandra, Anal. Chim. Acta, 2003, 486, 199.

    Article  CAS  Google Scholar 

  41. V. K. Gupta, S. Jain, and U. Khurana, Electroanalysis, 1997, 9, 478.

    Article  CAS  Google Scholar 

  42. V. K. Gupta, R. Mangla, U. Khurana, and P. Kumar, Electroanalysis, 1999, 11, 573.

    Article  CAS  Google Scholar 

  43. V. K. Gupta, S. Chandra, and R. Mangla, Electrochim. Acta, 2002, 47, 1579.

    Article  CAS  Google Scholar 

  44. A. K. Jain, V. K. Gupta, L. P. Singh, and J. R. Raisoni, Electrochim. Acta, 2006, 51, 2547.

    Article  CAS  Google Scholar 

  45. V. K. Gupta, B. Sethi, R. A. Sharma, S. Agarwal, and A. Bharti, J. Mol. Liq., 2013, 177, 114.

    Article  CAS  Google Scholar 

  46. V. K. Gupta, L. P. Singh, R. Singh, N. Upadhyay, S. P. Kaur, and B. Sethi, J. Mol. Liq., 2012, 174, 11.

    Article  CAS  Google Scholar 

  47. V. K. Gupta, A. K. Jain, G. Maheshwari, H. Lang, and Z. Ishtaiwi, Sens. Actuators, B, 2006, 117, 99.

    Article  CAS  Google Scholar 

  48. V. K. Gupta, A. K. Jain, and P. Kumar, Sens. Actuators, B, 2006, 120, 259.

    Article  CAS  Google Scholar 

  49. H. Khani, M. K. Rofouei, P. Arab, V. K. Gupta, and Z. Vafaei, J. Hazard. Mater., 2010, 183, 402.

    Article  CAS  PubMed  Google Scholar 

  50. V. K. Gupta, A. K. Jain, P. Kumar, S. Agarwal, and G. Maheshwari, Sens. Actuators, B, 2006, 113, 182.

    Article  CAS  Google Scholar 

  51. V. K. Gupta, N. Mergu, L. K. Kumawat, and A. K. Singh, Sens. Actuators, B, 2015, 207, 216.

    Article  CAS  Google Scholar 

  52. V. K. Gupta, A. K. Singh, and L. K. Kumawat, Sens. Actuators, B, 2014, 195, 98.

    Article  CAS  Google Scholar 

  53. V. K. Gupta, A. K. Jain, and G. Maheshwari, Talanta, 2007, 72, 1469.

    Article  CAS  PubMed  Google Scholar 

  54. V. K. Gupta, A. K. Jain, S. Agarwal, and G. Maheshwari, Talanta, 2007, 71, 1964.

    Article  CAS  PubMed  Google Scholar 

  55. S. Park, W. Kim, K. M. K. Swamy, H. Y. Lee, J. Y. Jung, G. Kim, Y. Kim, S. J. Kim, and J. Yoon, Dyes Pigments, 2013, 99, 323.

    Article  CAS  Google Scholar 

  56. Y. Zhao, B. Zheng, J. Du, D. Xiao, and L. Yang, Talanta, 2011, 85, 2194.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the Natural Science Foundation of China (41473071. 41101287). the Chinese Central Level Public Welfare Scientific Research Institutes Foundation for Basic Research & Development (562015Y-3994. 562016Y-4492. 562016Y-4686. 562016Y-4489). the Major Project of College Natural Science Foundation of Jiangsu Province (16KJA610001). the High Level Talent Project of “Six Talents Summit” in Jiangsu Province (JNHB-008). National-Local Joint Engineering Research Center for Biomedical Functional Materials, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-He Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Wang, FH., Xi, XJ. et al. A Rhodamine-based Dual Chemosensor for the Simultaneous Detection of Fe3+ and Cu2+. ANAL. SCI. 32, 1223–1229 (2016). https://doi.org/10.2116/analsci.32.1223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.1223

Keywords

Navigation