Skip to main content
Log in

Self-assembled Nanowire Arrays as Three-dimensional Nanopores for Filtration of DNA Molecules

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Molecular filtration and purification play important roles for biomolecule analysis. However, it is still necessary to improve efficiency and reduce the filtration time. Here, we show self-assembled nanowire arrays as three-dimensional (3D) nanopores embedded in a microfluidic channel for ultrafast DNA filtration. The 3D nanopore structure was formed by a vapor-liquid-solid (VLS) nanowire growth technique, which allowed us to control pore size of the filtration material by varying the number of growth cycles. λ DNA molecules (48.5 kbp) were filtrated from a mixture of T4 DNA (166 kbp) at the entrance of the 3D nanopore structure within 1 s under an applied electric field. Moreover, we observed single DNA molecule migration of T4 and λ DNA molecules to clarify the filtration mechanism. The 3D nanopore structure has simplicity of fabrication, flexibility of pore size control and reusability for biomolecule filtration. Consequently it is an excellent material for biomolecular filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. J. Ruthven, T. Bernhard, B. Memorial, and Q. Charlotte, Biochem. J., 1954, 62, 665.

    Google Scholar 

  2. J. Porath and P. Flodin, Nature, 1959, 183, 1657.

    Article  CAS  PubMed  Google Scholar 

  3. R. E. Beck and J. S. Schultz, Science, 1970, 170, 1302.

    Article  CAS  PubMed  Google Scholar 

  4. R. L. Fleischer, H. W. Alter, S. C. Furman, P. B. Price, and R. M. Walker, Science, 1972, 178, 255.

    Article  CAS  PubMed  Google Scholar 

  5. W. M. Deen, AIChE J., 1987, 33, 1409.

    Article  CAS  Google Scholar 

  6. H. D. Tong, H. V. Jansen, V. J. Gadgil, C. G. Bostan, E. Berenschot, C. J. M. van Rijn, and M. Elwenspoek, Nano Lett., 2004, 4, 283.

    Article  CAS  Google Scholar 

  7. C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, Nature, 2007, 445, 749.

    Article  CAS  PubMed  Google Scholar 

  8. W. Volkmuth and R. Austin, Nature, 1992, 358, 600.

    Article  CAS  PubMed  Google Scholar 

  9. N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, and Y. Baba, Anal. Chem., 2004, 76, 15.

    Article  CAS  PubMed  Google Scholar 

  10. T. Yasui, N. Kaji, R. Ogawa, S. Hashioka, M. Tokeshi, Y. Horiike, and Y. Baba, Anal. Chem., 2011, 83, 6635.

    Article  CAS  PubMed  Google Scholar 

  11. S. Pennathur, F. Baldessari, J. G. Santiago, M. G. Kattah, J. B. Steinman, and P. J. Utz, Anal. Chem., 2007, 79, 8316.

    Article  CAS  PubMed  Google Scholar 

  12. J. Fu, R. B. Schoch, A. L. Stevens, S. R. Tannenbaum, and J. Han, Nat. Nanotechnol., 2007, 2, 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P. S. Doyle, J. Bibette, A. Bancaud, and J.-L. Viovy, Science, 2002, 295, 2237.

    Article  CAS  PubMed  Google Scholar 

  14. M. Tabuchi, M. Ueda, N. Kaji, Y. Yamasaki, Y. Nagasaki, K. Yoshikawa, K. Kataoka, and Y. Baba, Nat. Biotechnol., 2004, 22, 337.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Zeng and D. J. Harrison, Anal. Chem., 2007, 79, 2289.

    Article  CAS  PubMed  Google Scholar 

  16. T. Yasui, S. Rahong, K. Motoyama, T. Yanagida, Q. Wu, and N. Kaji, ACS Nano, 2013, 7, 3029.

    Article  CAS  PubMed  Google Scholar 

  17. S. Rahong, T. Yasui, T. Yanagida, K. Nagashima, M. Kanai, A. Klamchuen, G. Meng, Y. He, F. Zhuge, N. Kaji, T. Kawai, and Y. Baba, Sci. Rep., 2014, 4, 5252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Klamchuen, T. Yanagida, M. Kanai, K. Nagashima, K. Oka, S. Rahong, M. Gang, M. Horprathum, M. Suzuki, Y. Hidaka, S. Kai, and T. Kawai, Appl. Phys. Lett., 2011, 99, 193105.

    Article  Google Scholar 

  19. G. Meng, T. Yanagida, K. Nagashima, T. Yanagishita, M. Kanai, K. Oka, A. Klamchuen, S. Rahong, M. Horprathum, B. Xu, F. Zhuge, Y. He, H. Masuda, and T. Kawai, RSC Adv., 2012, 2, 10618.

    Article  CAS  Google Scholar 

  20. G. Meng, T. Yanagida, K. Nagashima, H. Yoshida, M. Kanai, A. Klamchuen, F. Zhuge, Y. He, S. Rahong, X. Fang, S. Takeda, and T. Kawai, J. Am. Chem. Soc., 2013, 135, 7033.

    Article  CAS  PubMed  Google Scholar 

  21. G. Meng, T. Yanagida, H. Yoshida, K. Nagashima, M. Kanai, F. Zhuge, Y. He, A. Klamchuen, S. Rahong, X. Fang, S. Takeda, and T. Kawai, Nanoscale, 2014, 6, 7033.

    Article  CAS  PubMed  Google Scholar 

  22. S. Barth, C. Harnagea, S. Mathur, and F. Rosei, Nanotechnology, 2009, 20, 115705.

    Article  PubMed  Google Scholar 

  23. K. S. Kolahi, A. Donjacour, X. Liu, W. Lin, R. K. Simbulan, E. Bloise, E. Maltepe, and P. Rinaudo, PLoS One, 2012, 7, e41717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sakon Rahong, Takao Yasui or Yoshinobu Baba.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahong, S., Yasui, T., Yanagida, T. et al. Self-assembled Nanowire Arrays as Three-dimensional Nanopores for Filtration of DNA Molecules. ANAL. SCI. 31, 153–157 (2015). https://doi.org/10.2116/analsci.31.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.153

Keywords

Navigation