Skip to main content
Log in

Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. de la Cruz, F. Laborda, M. S. Callen, J. M. Lopez, and A. M. Mastral, J. Anal. At. Spectrom., 2009, 11, 2052.

    Google Scholar 

  2. L. Zhu, L. Guo, Z. Gao, G. Yin, B. Lee, F. Wang, and J. Xu, Mar. Pollut. Bull., 2010, 60, 2144.

    Article  CAS  PubMed  Google Scholar 

  3. M. Matsumoto and J. Yoshinaga, Environ. Pollut. Res., 2010, 17, 643.

    Article  CAS  Google Scholar 

  4. A. Shiel, D. Weis, and K. J. Orians, Sci. Total Environ., 2010, 408, 2357.

    Article  CAS  PubMed  Google Scholar 

  5. T. Hosono, C. C. Su, K. Okamura, and M. Taniguchi, J. Geochem. Explor., 2010, 107, 1.

    Article  CAS  Google Scholar 

  6. R. Bindler, Environ. Geochem. Health, 2011, 33, 311.

    Article  CAS  PubMed  Google Scholar 

  7. M. Takagi, J. Yoshinaga, A. Tanaka, and H. Seyama, Anal. Sci., 2011, 27, 29.

    Article  CAS  PubMed  Google Scholar 

  8. P. Stille, L. Pourcelot, M. Granet, M. C. Pierret, F. Gueguen, T. Perrone, G. Morvan, and F. Chabaux, Chem. Geol., 2011, 289, 140.

    Article  CAS  Google Scholar 

  9. L. Font, G. van der Peijl, I. van Wetten, P. Vroon, B. van der Wagt, and G. Davies, J. Anal. At. Spectrom., 2012, 27, 719.

    Article  CAS  Google Scholar 

  10. P. Negrel, M. Blessing, R. Millot, E. P. Giraud, and C. Innocent, TrAC, Trends Anal. Chem., 2012, 38, 143.

    Article  CAS  Google Scholar 

  11. S. R. Chenery, M. Izquierdo, E. Marzouk, B. Klinck, B. P. Roe, and A. M. Tye, Sci. Total Environ., 2012, 433, 547.

    Article  CAS  PubMed  Google Scholar 

  12. A. C. Kemp, C. K. Sommerfield, C. H. Vane, B. P. Horton, S. Chenery, S. Anisfeld, and D. Nikitina, Quat. Geochronol., 2012, 12, 40.

    Article  Google Scholar 

  13. M. M. Larsen, J. S. Blusztajn, O. Andersen, and I. Dahllof, J. Environ. Monit., 2012, 14, 2893.

    Article  CAS  PubMed  Google Scholar 

  14. F. Gueguen, P. Stille, V. Dietze, and R. Giere, Atomos. Environ., 2012, 62, 631.

    Article  CAS  Google Scholar 

  15. R. D. R. Salas, J. Ruiz, M. D. l. O. Villanueva, M. V. Moreno, V. M. Rodriguez, A. G. Alvarez, T. Grijalva, H. Mendivil, F. P. Moreno, and D. M. Figueroa, Atmos. Environ., 2012, 60, 202.

    Article  Google Scholar 

  16. M. Tomasevis, D. Antanasijevic, M. Anicic, I. Deljanin, A. P. Grujic, and M. Ristic, Ecol. Indic., 2013, 24, 504.

    Article  Google Scholar 

  17. E. J. Yoo, J. A Lee, J. S Park, K. Lee, W. S. Lee, J. S. Han, J. W. Choi, Environ. Monit. Assess., 2014, 186, 781.

    Article  CAS  PubMed  Google Scholar 

  18. S. E. Jackson, N. J. Peason, and W. L. Griffin, in “Laser-ablation-ICPMS in the Earth sciences”, Short Course Series, 2001, Vol. 29, Mineralogical Association of Canada, 105.

  19. J. S. Becker, J. Anal. At. Spectrom., 2002, 17, 1172.

    Article  CAS  Google Scholar 

  20. M. Tiepolo, Chem. Geol., 2003, 199, 159.

    Article  CAS  Google Scholar 

  21. K. P. Jochum, B. Stoll, K. Herwig, M. Amini, and W. Abouchami, EOS, Trasactions of the American Geophysical Union, Fall Meeting, Suppl., 2004, 85, F1929.

    Google Scholar 

  22. K. P. Jochum, B. Stoll, K. Herwig, M. Amini, W. Abouchami, and A. W. Hofmann, Int. J. Mass Spectrom., 2005, 242, 281.

    Article  CAS  Google Scholar 

  23. K. P. Jochum, B. Stoll, K. Herwig, and M. Willbold, J. Anal. At. Spectrom., 2006, 21, 666.

    Article  CAS  Google Scholar 

  24. J. I. Simon, M. R. Reid, and E. D. Young, Geochem. Cosmochim. Acta, 2007, 71, 2014.

    Article  CAS  Google Scholar 

  25. A. J. R. Kent, J. Anal. At. Spectrom., 2008, 23, 968.

    Article  CAS  Google Scholar 

  26. A. K. Souders and P. J. Sylvester, J. Anal. At. Spectrom., 2010, 25, 975.

    Article  CAS  Google Scholar 

  27. M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, Anal. Chim. Acta, 2010, 677, 55.

    Article  CAS  PubMed  Google Scholar 

  28. L. Balcaen, L. Moens, and F. Vanhaecke, Spectrochim. Acta, Part B, 2010, 65, 769.

    Article  Google Scholar 

  29. C. R. M. McFarlane and M. McKeough, Am. Mineral., 2013, 98, 1644.

    Article  CAS  Google Scholar 

  30. C. Standish, B. Dhuime, R. Chapman, C. Coath, C. Hawkesworth, and A. Piked, J. Anal. At. Spectrom., 2013, 28, 217.

    Article  CAS  Google Scholar 

  31. C. Kaiyun, Y. Honglin, B. Zhian, Z. Chunlei, and D. Mengning, Geostand. Geoanal. Res., 2014, 38, 5.

    Article  Google Scholar 

  32. Q. Bian, C. C. Garcia, J. Koch, and K. Niemax. J. Anal. At. Spectrom., 2006, 21, 187.

    Article  CAS  Google Scholar 

  33. M. Ohata, D. Tabersky, R. Glaus, J. Koch, B. Hattendorf, and D. Gunther, J. Anal. At. Spectrom., 2014, 29, 1345.

    Article  CAS  Google Scholar 

  34. S. E. Jackson and D. Gunther, J. Anal. At. Spectrom., 2003, 18, 205.

    Article  CAS  Google Scholar 

  35. I. Horn and F. Blanckenburg, Spectrochim. Acta, Part B, 2007, 62, 410.

    Article  Google Scholar 

  36. H. Kuhn, N. J. Pearson, and S. E. Jackson, J. Anal. At. Spectrom., 2007, 22, 547.

    Article  CAS  Google Scholar 

  37. D. Bleiner and D. Gunther, J. Anal. At. Spectrom., 2001, 16, 449.

    Article  CAS  Google Scholar 

  38. L. Halicz and D. Gunther, J. Anal. At. Spectrom., 2004, 19, 1539.

    Article  CAS  Google Scholar 

  39. https://www-s.nist.gov/srmors/view_detail.cfm?srm=981.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ohata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohata, M., Nonose, N., Dorta, L. et al. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements. ANAL. SCI. 31, 1309–1315 (2015). https://doi.org/10.2116/analsci.31.1309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.1309

Keywords

Navigation