Skip to main content
Log in

Affinity Capillary Electrophoresis for Selective Control of Electrophoretic Mobility of Sialic Acid Using Lanthanide-Hexadentate Macrocyclic Polyazacarboxylate Complexes

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

It is difficult to control the electrophoretic mobility in order to obtain high resolution among saccharides in complex samples. We report herein on a new affinity capillary electrophoresis (ACE) method for an anionic monosaccharide, N-acetylneuraminic acid (Neu5Ac), which is important in terms of pathological diagnosis, using lanthanide-hexadentate macrocyclic polyazacarboxylate complexes (Ln-NOTA) as affinity reagents. It was shown that Ln-NOTA complexes increased the anionic mobility of Neu5Ac by approximately 40% through selective complexation with Neu5Ac. The extent of change in the mobility strongly depended on the type of central metal ion of Ln-NOTA. The stability constant (K) of Lu-NOTA with Neu5Ac was determined by ACE to be log Kb = 3.62 ± 0.04, which is the highest value among artificial receptors for Neu5Ac reported so far. Using this ACE, the Neu5Ac content in a glycoprotein sample, α1-acid glycoprotein (AGP), was determined after acid hydrolysis. Complete separation between Neu5Ac and hydrolysis products was successful by controlling the mobility to determine the concentration of Neu5Ac.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Schauer, Glycoconjugate J., 2000, 17, 485.

    Article  CAS  Google Scholar 

  2. X. Chen and A. Varki, ACS Chem. Biol., 2010, 5, 163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Cazet, S. Julien, M. Bobowski, M.-A. Krzewinski-Recchi, A. Harduin-Lepers, S. Groux-Degroote, and P. Delannoy, Carbohydr. Res., 2010, 345, 1377.

    Article  CAS  PubMed  Google Scholar 

  4. M. A. Javors and B. A. Johnson, Addiction, 2003, 98, 45.

    Article  PubMed  Google Scholar 

  5. R. P. Oda and J. P. Landers, Electrophoresis, 1996, 17, 431.

    Article  CAS  PubMed  Google Scholar 

  6. C. Weykamp, J. Wielders, A. Helander, R. F. Anton, V. Bianchi, J.-O. Jeppsson, C. Siebelder, J. B. Whitfield, and F. Schellenberg, Clin. Chem., 2014, 60, 945.

    Article  CAS  PubMed  Google Scholar 

  7. M. Taniguchi, Y. Okayama, Y. Hashimoto, M. Kitaura, D. Jimbo, Y. Wakutani, K. Wada, K. Nakashima, H. Akatsu, K. Furukawa, H. Arai, and K. Urakami, Dementia Geriatr. Cognit. Disord., 2008, 26, 117.

    Article  CAS  Google Scholar 

  8. F. Bortolotti, G. De Paoli, and F. Taliaro, J. Chromatogr. B, 2006, 841, 96.

    Article  CAS  Google Scholar 

  9. P. Sillanaukee, M. Pönniö, and I. P. Jääskeläinen, Eur. J. Clin. Invest., 1999, 29, 413.

    Article  CAS  PubMed  Google Scholar 

  10. A. Carter and N. H. Martin, J. Clin. Pathol., 1962, 15, 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. L. Chrostek, B. Cylwik, W. Korcz, A. Krawiec, A. Koput, Z. Supronowicz, and M. Szmitkowski, Alcohol.: Clin. Exp. Res., 2007, 31, 996.

    Article  CAS  PubMed  Google Scholar 

  12. F. N. Lamari and N. K. Karamanos, J. Chromatogr. B, 2002, 781, 3.

    Article  CAS  Google Scholar 

  13. V. Spichtig, J. Michaud, and S. Austin, Anal. Biochem., 2010, 405, 28.

    Article  CAS  PubMed  Google Scholar 

  14. M. H. E. Spyridaki and P. A. Siskos, J. Chromatogr. A, 1999, 831, 179.

    Article  CAS  Google Scholar 

  15. J. S. Rohrer, Anal. Biochem., 2000, 283, 3.

    Article  CAS  PubMed  Google Scholar 

  16. Z. Zhang, N. M. Khan, K. M. Nunez, E. K. Chess, and C. M. Szabo, Anal. Chem., 2012, 84, 4104.

    Article  CAS  PubMed  Google Scholar 

  17. J.-P. Zanetta, A. Pons, M. Iwersen, C. Mariller, Y. Leroy, P. Timmerman, and R. Schauer, Glycobiology, 2011, 11, 663.

    Article  Google Scholar 

  18. Z. Szabo, J. Bones, A. Guttman, J. Glick, and B. L. Karger, Anal. Chem., 2012, 84, 7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K. Strousopoulou, M. Militsopoulou, K. Stagiannis, F. N. Lamari, and N. K. Karamanos, Biomed. Chromatogr., 2002, 16, 146.

    Article  CAS  PubMed  Google Scholar 

  20. T. Soga and D. N. Heiger, Anal. Biochem., 1998, 261, 73.

    Article  CAS  PubMed  Google Scholar 

  21. X. Dong, X. Xu. F. Han, X. Ping, X. Yuang, and B. Lin, Electrophoresis, 2001, 22, 2231.

    Article  CAS  PubMed  Google Scholar 

  22. G. Rippel, H. Corstjens, H. A. H. Billiet, and J. Frank, Electrophoresis, 1997, 18, 2175.

    Article  CAS  PubMed  Google Scholar 

  23. N. H. H. Heegaard, Electrophoresis, 2009, 30, S229.

    Article  PubMed  Google Scholar 

  24. M. Gayton-Ely, T. Pappas, and L. Holland, Anal. Bioanal. Chem., 2005, 382, 570.

    Article  CAS  PubMed  Google Scholar 

  25. C. Schou and N. H. H. Heegaard, Electrophoresis, 2006, 27, 44.

    Article  CAS  PubMed  Google Scholar 

  26. A. C. Moser, C. W. Willicott, and D. S. Hage, Electrophoresis, 2014, 35, 937.

    Article  CAS  PubMed  Google Scholar 

  27. M. Beneš, I. Zusková, J. Svobodová, and B. Gaš, Electrophoresis, 2012, 33, 1032.

    Article  PubMed  Google Scholar 

  28. F. Fei and P. Britz-Mckibbin, Anal. Bioanal. Chem., 2010, 398, 1349.

    Article  CAS  PubMed  Google Scholar 

  29. C. C. Lü, H. Y. Li, H. Y. Wang, and Z. Liu, Anal. Chem., 2013, 85, 2361.

    Article  PubMed  Google Scholar 

  30. G. Springsteen and B. Wang, Tetrahedron, 2002, 58, 5291.

    Article  CAS  Google Scholar 

  31. J. A. Peters, Coord. Chem. Rev., 2014, 268, 1.

    Article  CAS  Google Scholar 

  32. S. M. Levonis, M. J. Kiefel, and T. A. Houston, Chem. Commun., 2009, 2278.

  33. C. S. Geninatti, D. Alberti, I. Szabo, S. Aime, and K. Djanashvili, Angew. Chem., Int. Ed., 2013, 52, 1161.

    Article  Google Scholar 

  34. M. Takeuchi, M. Yamamoto, and S. Shinkai, Chem. Commun., 1997, 1731.

  35. M. Regueiro-Figuerona, K. Djanashvili, D. Esteban-Gómez, T. Chauvin, É. Tóth, A. de Blas, T. Rodoríguez-Blas, and C. Platas-Iglesias, Inorg. Chem., 2010, 49, 4212.

    Article  Google Scholar 

  36. S. Saito, A. Hikichi, T. Kamura, K. Hattori, M. Aoyama, and M. Shibukawa, Chem. Lett., 2009, 38, 412413.

    Google Scholar 

  37. K. Ouchi, S. Saito, and M. Shibukawa, Inorg. Chem., 2013, 52, 6239.

    Article  CAS  PubMed  Google Scholar 

  38. K. Furuhata, Trends Glycosci. Glycotechnol., 2004, 16, 143.

    Article  CAS  Google Scholar 

  39. T. Haraga, S. Saito, Y. Sato, S. Asai, Y. Hanzawa, H. Hoshino, M. Shibukawa, K. Ishimori, and K. Takahashi, Anal. Sci., 2014, 30, 773.

    Article  CAS  PubMed  Google Scholar 

  40. L. Warren, J. Biol. Chem., 1957, 234, 1971.

    Article  Google Scholar 

  41. A. Laganà, B. Pardo-Martínez, A. Marino, G. Fago, and M. Bizzarri, Clin. Chim. Acta, 1995, 243, 165.

    Article  PubMed  Google Scholar 

  42. T. Fournier, N. N. Medjoubi, and D. Porquet, Biochim. Biophys. Acta, 2000, 1482, 157.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Saito.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, D., Ouchi, K., Shibukawa, M. et al. Affinity Capillary Electrophoresis for Selective Control of Electrophoretic Mobility of Sialic Acid Using Lanthanide-Hexadentate Macrocyclic Polyazacarboxylate Complexes. ANAL. SCI. 31, 1143–1149 (2015). https://doi.org/10.2116/analsci.31.1143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.1143

Keywords

Navigation