Skip to main content
Log in

Quasi-elastic Laser Scattering for Measuring Inhomogeneous Interfacial Tension in Non-equilibrium Phenomena with Convective Flows

  • Special Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An inhomogeneous distribution of interfacial tension can induce different types of non-equilibrium spontaneous motion at the interface by convective flow, or by the solutal Marangoni effect. Several applications of the quasi-elastic laser scattering (QELS) method used to study these effects are presented here. The relationship between the interfacial tension and the non-equilibrium phenomena has been verified experimentally for each application. In a water/nitrobenzene oscillatory system with continuous surfactant addition to the interface, the local adsorption of surfactants at the interface has been demonstrated and shown to be strongly related to the presence of electrolytes. In a donor/membrane/acceptor system, the dual-beam QELS method shows that surfactant adsorption at the membrane/acceptor interface is responsible for oscillations in the electric potential. The differences in the adsorption/desorption behavior of metal complex catalysts between air/liquid and liquid/liquid interfaces were considered in the propagating chemical waves of the Belousov-Zhabotinsky reaction. We successfully measured the distribution of interfacial tension around a self-propelled camphor boat and an alcohol droplet floating on an aqueous phase, and compared the mechanisms of their motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

9 References

  1. J. Thomson, Philos. Mag., 1855, 10, 330.

    Article  Google Scholar 

  2. J. B. Fournier and A. M. Cazabat, Europhys. Lett., 1992, 20, 517.

    Article  CAS  Google Scholar 

  3. V. I. Kovalchuk, H. Kamusewitz, D. Vollhardt, and N. M. Kovalchuk, Phys. Rev. E, 1999, 60, 2029.

    Article  CAS  Google Scholar 

  4. Y. Ikezoe, S. Ishizaki, T. Takahashi, H. Yui, M. Fujinami, and T. Sawada, J. Colloid Interface Sci., 2004, 275, 298.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Ikezoe, S. Ishizaki, H. Yui, M. Fujinami, and T. Sawada, Anal. Sci., 2004, 20, 1509.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Ikezoe, S. Ishizaki, H. Yui, M. Fujinami, and T. Sawada, Anal. Sci., 2004, 20, 435.

    Article  CAS  PubMed  Google Scholar 

  7. N. M. Kovalchuk and D. Vollhardt, J. Phys. Chem. B, 2006, 110, 9774.

    Article  CAS  PubMed  Google Scholar 

  8. N. M. Kovalchuk and D. Vollhardt, Colloid Surf., 2007, 309, 231.

    Article  CAS  Google Scholar 

  9. S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii, and K. Yoshikawa, Langmuir, 1997, 13, 4454.

    Article  CAS  Google Scholar 

  10. S. Nakata, M. I. Kohira, and Y. Hayashima, Chem. Phys. Lett., 2000, 322, 419.

    Article  CAS  Google Scholar 

  11. Y. Hayashima, M. Nagayama, and S. Nakata, J. Phys. Chem. B, 2001, 105, 5353.

    Article  CAS  Google Scholar 

  12. H. Kitahata, S.-i. Hiromatsu, Y. Doi, S. Nakata, and M. Rafiqul Islam, Phys. Chem. Chem. Phys., 2004, 6, 2409.

    Article  CAS  Google Scholar 

  13. S. Nakata, N. Kawagishi, M. Murakami, N. J. Suematsu, and M. Nakamura, Colloid Surf., A, 2009, 349, 74.

  14. N. J. Suematsu, Y. Ikura, M. Nagayama, H. Kitahata, N. Kawagishi, M. Murakami, and S. Nakata, J. Phys. Chem. C, 2010, 114, 9876.

    Article  CAS  Google Scholar 

  15. N. J. Suematsu, S. Nakata, A. Awazu, and H. Nishimori, Phys. Rev. E, 2010, 81, 056210.

    Article  Google Scholar 

  16. E. Heisler, N. J. Suematsu, A. Awazu, and H. Nishimori, J. Phys. Soc. Jpn., 2012, 81, 074605.

    Article  Google Scholar 

  17. E. Heisler, N. J. Suematsu, A. Awazu, and H. Nishimori, Phys. Rev. E, 2012, 85, 055201.

    Article  Google Scholar 

  18. Y. S. Ikura, R. Tenno, H. Kitahata, N. J. Suematsu, and S. Nakata, J. Phys. Chem. B, 2012, 116, 992.

    Article  CAS  PubMed  Google Scholar 

  19. B. P. Belousov, in “Collection of Short Papers on Radiation Medicine; Medgiz: Moscow”, 1959, 145.

  20. A. M. Zhabotinskii, Dokl. Akad. Nauk SSSR, 1964, 157, 362.

    Google Scholar 

  21. H. Miike, S. C. Müller, and B. Hess, Phys. Rev. Lett., 1988, 61, 2109.

    Article  CAS  PubMed  Google Scholar 

  22. H. Miike, S. C. Müller, and B. Hess, Chem. Phys. Lett., 1988, 144, 515.

    Article  CAS  Google Scholar 

  23. H. Miike and S. C. Müller, Chaos, 1993, 3, 21.

    Article  CAS  PubMed  Google Scholar 

  24. H. Kitahata, R. Aihara, N. Magome, and K. Yoshikawa, J. Chem. Phys., 2002, 116, 5666.

    Article  CAS  Google Scholar 

  25. T. Ichino, T. Asahi, H. Kitahata, N. Magome, K. Agladze, and K. Yoshikawa, J. Phys. Chem. C, 2008, 112, 3032.

    Article  CAS  Google Scholar 

  26. D. A. Nield, J. Fluid Mech., 1964, 19, 341.

    Article  Google Scholar 

  27. J. R. A. Pearson, J. Fluid Mech., 1958, 4, 489.

    Article  Google Scholar 

  28. L. E. Scriven and C. V. Sternling, Nature, 1960, 187, 186.

    Article  Google Scholar 

  29. R. H. Katyl and U. Ingard, Phys. Rev. Lett., 1968, 20, 248.

    Article  Google Scholar 

  30. Y. L. Chen, M. Sano, M. Kawaguchi, H. Yu, and G. Zografi, Langmuir, 1986, 2, 349.

    Article  CAS  Google Scholar 

  31. M. Sano, M. Kawaguchi, Y. L. Chen, R. J. Skarlupka, T. Chang, G. Zografi, and H. Yu, Rev. Sci. Instrum., 1986, 57, 1158.

    Article  CAS  Google Scholar 

  32. B. B. Sauer, Y. L. Chen, G. Zografi, and H. Yu, Langmuir, 1988, 4, 111.

    Article  CAS  Google Scholar 

  33. K. Sakai, P. K. Choi, H. Tanaka, and K. Takagi, Rev. Sci. Instrum., 1991, 62, 1192.

    Article  CAS  Google Scholar 

  34. S. Takahashi, A. Harata, T. Kitamori, and T. Sawada, Anal. Sci., 1994, 10, 305.

    Article  CAS  Google Scholar 

  35. T. Toyota, T. Kimura, K. Miyoshi, and M. Fujinami, J. Colloid Interface Sci., 2010, 349, 632.

    Article  CAS  PubMed  Google Scholar 

  36. R. Tanaka, T. Nomoto, T. Toyota, H. Kitahata, and M. Fujinami, J. Phys. Chem. B, 2013, 117, 13893.

    Article  CAS  PubMed  Google Scholar 

  37. T. Toyota, K. Uchiyama, T. Kimura, T. Nomoto, and M. Fujinami, Anal. Sci., 2013, 29, 911.

    Article  CAS  PubMed  Google Scholar 

  38. T. Nomoto, K. Goto, K. Uchiyama, T. Toyota, and M. Fujinami, Anal. Sci., 2014, 30, 463.

    Article  CAS  PubMed  Google Scholar 

  39. Y. Karasawa, S. Oshima, T. Nomoto, T. Toyota, and M. Fujinami, Chem. Lett., 2014, 43, 1002.

    Article  CAS  Google Scholar 

  40. S. Oshima, T. Nomoto, T. Toyota, and M. Fujinami, Anal. Sci., 2014, 30, 441.

    Article  CAS  PubMed  Google Scholar 

  41. H. S. Lamb, “Hydrodynamics”, 6th ed., 1932, Cambridge University Press.

  42. Y. Minami and K. Sakai, Rev. Sci. Instrum., 2009, 80.

  43. K. Arai, S. Fukuyama, F. Kusu, and K. Takamura, Bioelectrochem. Bioenerg., 1994, 33, 159.

    Article  CAS  Google Scholar 

  44. K. Arai, S. Fukuyama, F. Kusu, and K. Takamura, Electrochim. Acta, 1995, 40, 2913.

    Article  CAS  Google Scholar 

  45. K. Arai and F. Kusu, Anal. Sci., 2002, 17, i313.

    Google Scholar 

  46. K. Arai, F. Kusu, and K. Takamura, Chem. Lett., 1990, 19, 1517.

    Article  Google Scholar 

  47. K. Maeda, S. Nagami, Y. Yoshida, H. Ohde, and S. Kihara, J. Electroanal. Chem., 2001, 496, 124.

    Article  CAS  Google Scholar 

  48. K. Miyamura, H. Morooka, K. Hirai, and Y. Gohshi, Chem. Lett., 1990, 19, 1833.

    Article  Google Scholar 

  49. V. Pimienta, R. Etchenique, and T. Buhse, J. Phys. Chem. A, 2001, 105, 10037.

    Article  CAS  Google Scholar 

  50. V. Pimienta, D. Lavabre, T. Buhse, and J.-C. Micheau, J. Phys. Chem. B, 2004, 108, 7331.

    Article  CAS  Google Scholar 

  51. J. Srividhya and M. S. Gopinathan, J. Phys. Chem. B, 2003, 107, 1438.

    Article  CAS  Google Scholar 

  52. M. Szpakowska, I. Czaplicka, and O. B. Nagy, Biophys. Chem., 2006, 120, 148.

    Article  CAS  PubMed  Google Scholar 

  53. M. Szpakowska, A. Magnuszewska, and J. Szwacki, J. Membr. Sci., 2006, 273, 116.

    Article  CAS  Google Scholar 

  54. K. Toko, N. Nakashima, S. Iiyama, K. Yamafuji, and T. Kunitake, Chem. Lett., 1986, 15, 1375.

    Article  Google Scholar 

  55. K. Toko, K. Yoshikawa, M. Tsukiji, M. Nosaka, and K. Yamafuji, Biophys. Chem., 1985, 22, 151.

    Article  CAS  PubMed  Google Scholar 

  56. T. Yoshidome, T. Higashi, M. Mitsushio, and S. Kamata, Chem. Lett., 1998, 27, 855.

    Article  Google Scholar 

  57. K. Yoshikawa and Y. Matsubara, J. Am. Chem. Soc., 1984, 106, 4423.

    Article  CAS  Google Scholar 

  58. K. Yoshikawa, T. Omochi, and Y. Matsubara, Biophys. Chem., 1986, 23, 211.

    Article  CAS  PubMed  Google Scholar 

  59. K. Yoshikawa, M. Shoji, S. Nakata, S. Maeda, and H. Kawakami, Langmuir, 1988, 4, 759.

    Article  CAS  Google Scholar 

  60. H. Yoshihisa, S. Sutou, K. Miyamura, and Y. Gohshi, Anal. Sci., 1998, 14, 133.

    Article  CAS  Google Scholar 

  61. H. Kitahata, N. Yoshinaga, K. H. Nagai, and Y. Sumino, Phys. Rev. E, 2011, 84, 015101.

    Article  Google Scholar 

  62. O. Inomoto, K. Abe, T. Amemiya, T. Yamaguchi, and S. Kai, Phys. Rev. E, 2000, 61, 5326.

    Article  CAS  Google Scholar 

  63. T. Kusumi, Ph.D. Dissertation, Nagoya University, Nagoya, Japan, 1997.

  64. K. Yoshikawa, T. Kusumi, M. Ukitsu, and S. Nakata, Chem. Phys. Lett., 1993, 211, 211.

    Article  CAS  Google Scholar 

  65. K. Nagai, Y. Sumino, H. Kitahata, and K. Yoshikawa, Phys. Rev. E, 2005, 71, 065301.

    Article  Google Scholar 

  66. K. Nagai, Y. Sumino, and K. Yoshikawa, Colloid Surf., B, 2007, 56, 197.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Fujinami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomoto, T., Toyota, T. & Fujinami, M. Quasi-elastic Laser Scattering for Measuring Inhomogeneous Interfacial Tension in Non-equilibrium Phenomena with Convective Flows. ANAL. SCI. 30, 707–716 (2014). https://doi.org/10.2116/analsci.30.707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.707

Keywords

Navigation