Skip to main content
Log in

A Theoretical Approach to the Fluorophilicity of Ions via the Gibbs Energy of Ion Transfer at the Fluorous Solvent/Water Interface

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The non-Bornian solvation model has been applied to a theoretical consideration of the Gibbs free energy for the transfer of fluorinated anions, non-fluorinated cations, and non-fluorinated anions at the 2H,3H-decafluoropentane (DFP)/water (W) and 1,2-dichloroethane (DCE)/W interfaces. According to our previous experimental results, the fluorinated anions are more stable in DFP than DCE, while the non-fluorinated cations and anions are less stable in DFP. To understand this characteristic feature of DFP, energy decomposition analyses have been performed for the hypothetical transfer of ions at the DFP/DCE interface. In conclusion, the characteristics of DFP as a fluorous solvent should be explained in terms of the higher repulsive interaction of the solvent molecule with ions, particularly with non-fluorinated ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. T. Horváth and J. Rábai, Science, 1994, 266, 72.

    Article  PubMed  Google Scholar 

  2. R. L. Scott, J. Am. Chem. Soc., 1948, 70, 4090.

    Article  CAS  PubMed  Google Scholar 

  3. J. H. Hildebrand and D. R. F. Cochran, J. Am. Chem. Soc., 1949, 71, 22.

    Article  CAS  Google Scholar 

  4. D.-W. Zhu, Synthesis, 1993, 953.

    Google Scholar 

  5. J. A. Gladysz and C. Emnet, “Handbook of Fluorous Chemistry”, ed. J. A. Gladysz, D. P. Curran, and I. T. Horváth, 2004, Chap. 3, WILEY-VCH, Weinheim.

  6. H. Katano, Y. Kuroda, and K. Uematsu, J. Electroanal. Chem., 2017, 788, 232.

    Article  CAS  Google Scholar 

  7. H. Katano, K. Uematsu, Y. Kuroda, and T. Osakai, J. Electroanal. Chem., 2017, 796, 82.

    Article  CAS  Google Scholar 

  8. H. Katano, K. Uematsu, Y. Kuroda, and T. Osakai, Anal. Sci., 2019, 35, 1031.

    Article  CAS  PubMed  Google Scholar 

  9. K. Uematsu, J. Yamagata, H. Sakae, H. Katano, and T. Osakai, Anal. Sci., 2021, 37, 1707.

    Article  CAS  PubMed  Google Scholar 

  10. In this study, the formal and standard Gibbs energies of ion transfer are defined as those from W to non-aqueous phase according to the IUPAC recommendation: Z. Samec, Pure Appl. Chem., 2004, 76, 2147.

    Article  CAS  Google Scholar 

  11. L. E. Kiss, I. Kövesdi, and J. Rábai, J. Fluorine Chem., 2001, 108, 95.

    Article  CAS  Google Scholar 

  12. E.. de Wolf, P. Ruelle, J. van den Broeke, B.-J. Deelman, and G.. van Koten, J. Phys. Chem. B, 2004, 108, 1458.

    Article  Google Scholar 

  13. T. Osakai, Y. Naito, K. Eda, and M. Yamamoto, J. Phys. Chem. B, 2015, 119, 13167.

    Article  CAS  PubMed  Google Scholar 

  14. A. Yamada, E. Yoshida, K. Eda, and T. Osakai, Anal. Sci., 2018, 34, 919.

    Article  CAS  PubMed  Google Scholar 

  15. R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833.

    Article  CAS  Google Scholar 

  16. B. H. Besler, K. M. Merz, and P. A. Kollman, J. Comput. Chem., 1990, 11, 431.

    Article  CAS  Google Scholar 

  17. U. C. Singh and P. A. Kollman, J. Comput. Chem., 1984, 5, 129.

    Article  CAS  Google Scholar 

  18. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 1988, 88, 899.

    Article  CAS  Google Scholar 

  19. B. Lee and F. M. Richards, J. Mol. Biol., 1971, 55, 379.

    Article  CAS  PubMed  Google Scholar 

  20. A. Shrake and J. A. Rupley, J. Mol. Biol., 1973, 79, 351.

    Article  CAS  PubMed  Google Scholar 

  21. K. Kitaura and K. Morokuma, Int. J. Quantum Chem., 1976, 10, 325.

    Article  CAS  Google Scholar 

  22. H. Umeyama and K. Morokuma, J. Am. Chem. Soc., 1977, 99, 1316.

    Article  CAS  Google Scholar 

  23. S.-H. Hwang, J.-R. Kim, S. D. Lee, H. Lee, H. S. Kim, and H. Kim, J. Ind. Eng. Chem., 2007, 13, 537.

    CAS  Google Scholar 

  24. S. A. Mumford and J. W. C. Phillips, J. Chem. Soc., 1950, 75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Osakai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osakai, T., Kato, T., Eda, K. et al. A Theoretical Approach to the Fluorophilicity of Ions via the Gibbs Energy of Ion Transfer at the Fluorous Solvent/Water Interface. ANAL. SCI. 37, 1783–1787 (2021). https://doi.org/10.2116/analsci.21P178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P178

Keywords

Navigation