Skip to main content
Log in

High-heat Effects on the Physical and Chemical Properties of Soil Organic Matter and Its Water-soluble Components in Japan’s Forests: A Comprehensive Approach Using Multiple Analytical Methods

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Wildfires that expose the soil organic layer to high heat levels can alter soil organic matter (SOM), which includes water-soluble organic matter (WSOM) components. Various evaluation methods were used to characterize and quantify the effects of high heat levels on SOM and WSOM, including ion chromatography, thermogravimetry-differential thermal analysis (TG-DTA), colorimetry, elemental analysis, pyrolysis-gas chromatography-mass spectrometry using tetramethylammonium hydroxide (TMAH-py-GC/MS), total organic carbon (TOC) analysis, three-dimensional excitation-emission matrix (3DEEM) spectroscopy, and high-performance size-exclusion chromatography. In this study, we applied each of these evaluation methods using soil samples that were collected from broadleaf, coniferous, and bamboo forests and peatland in Japan and exposed to different initial high heat levels. Based on the TG-DTA results, the remaining mass in select soil samples markedly decreased when reheated to approximately 200°C. Comparatively, the TMAH-py-GC/MS results indicated a drastic change in SOM composition and the production of low molecular organic components (<C10) at this temperature. The TOC analysis results also indicated a significant increase in the proportion of WSOM. Colorimetry and elemental analysis results indicated that the soil color was dependent upon the initial heating temperature and was related to the H/C and O/C atomic ratios. The results of this study can form the basis for future similar studies for accurately characterizing and quantifying the heat effects on soil, and the effects of increasing wildfires due to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. A. González-Pérez, F. J. González-Vila, G. Almendros, and H. Knicker, Environ. Int., 2004, 30, 855.

    Article  PubMed  Google Scholar 

  2. K. Kalbitz, S. Solinger, J.-H. Park, B. Michalzik, and E. Matzner, Soil Sci., 2000, 165, 277.

    Article  CAS  Google Scholar 

  3. S. McDonald, A. G. Bishop, P. D. Prenzler, and K. Robards, Anal. Chim. Acta, 2004, 527, 105.

    Article  CAS  Google Scholar 

  4. M. Flannigan, A. S. Cantin, W. J. De Groot, M. Wotton, A. Newbery, and L. M. Gowman, For. Ecol. Manage., 2013, 294, 54.

    Article  Google Scholar 

  5. N. P. Gillett, A. J. Weaver, F. W. Zwiers, and M. D. Flannigan, Geophys. Res. Lett., 2004, 37, L18211.

    Article  Google Scholar 

  6. UN (United Nations), Draft Outcome Document of the United Nations Summit for the Adoption of the Post-2015 Development Agenda, 2015.

    Google Scholar 

  7. J. T. Randerson, H. Liu, M. G. Flanner, S. D. Chambers, Y. Jin, P. G. Hess, G. Pfister, M. C. Mack, K. K. Treseder, L. R. Welp, F. S. Chapin, J. W. Harden, M. L. Goulden, E. Lyons, J. C. Neff, E. A. G. Schuur, and C. S. Zender, Science, 2006, 374, 1130.

    Article  Google Scholar 

  8. Y. Kihara, K. Sazawa, H. Kuramitz, M. Kurasaki, T. Saito, T. Hosokawa, M. S. Syawal, L. Wulandari, and S. Tanaka, Environ. Sci. Pollut. Res. Int., 2015, 22, 2384.

    Article  PubMed  Google Scholar 

  9. T. Hernández, C. García, and I. Reinhardt, Biol. Fertil. Soils, 1997, 25, 109.

    Article  Google Scholar 

  10. L. F. Debano, J. Hydrol., 2000, 237-232, 195.

    Article  Google Scholar 

  11. G. Certini, Oecologia, 2005, 143, 1.

    Article  PubMed  Google Scholar 

  12. H. Knicker, Biogeochemistry, 2007, 85, 91.

    Article  CAS  Google Scholar 

  13. J. Mataix-Solera, A. Cerdà, V. Arcenegui, A. Jordán, and L. M. Zavala, Earth-Science Rev., 2011, 109, 44.

    Article  Google Scholar 

  14. G. Almendros and F. González-Vila, Spanish J. Soil Sci., 2012, 2, 8.

    Google Scholar 

  15. J. Rodríguez, J. A. González-Pérez, A. Turmero, M. Hernández, A. S. Ball, F. J. González-Vila, and M. Enriqueta Arias, Catena, 2017, 158, 82.

    Article  Google Scholar 

  16. J. Rodríguez, J. A. González-Pérez, A. Turmero, M. Hernández, A. S. Ball, F. J. González-Vila, and M. E. Arias, Sci. Total Environ., 2018, 634, 650.

    Article  PubMed  Google Scholar 

  17. N. Katsumi, K. Yonebayashi, and M. Okazaki, Sci. Total Environ., 2016, 547, 23.

    Article  Google Scholar 

  18. K. Sazawa, T. Wakimoto, N. Hata, S. Taguchi, S. Tanaka, M. Tafu, and H. Kuramitz, Anal. Methods, 2013, 5, 2660.

    Article  CAS  Google Scholar 

  19. K. Sazawa, H. Yoshida, K. Okusu, N. Hata, and H. Kuramitz, Environ. Sci. Pollut. Res., 2018, 25, 30325.

    Article  CAS  Google Scholar 

  20. K. Sazawa, T. Wakimoto, M. Fukushima, Y. Yustiawati, M. S. Syawal, N. Hata, S. Taguchi, S. Tanaka, D. Tanaka, and H. Kuramitz, ACS Earth Sp. Chem., 2018, 2, 692.

    Article  CAS  Google Scholar 

  21. K. Sazawa, M. Tachi, T. Wakimoto, T. Kawakami, N. Hata, S. Taguchi, and H. Kuramitz, Int. J. Environ. Res. Public Health, 2011, 8, 1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Yamauchi, W. Toyodome, K. Umeda, N. Nishida, and T. Murae, Anal. Sci., 2004, 20, 1453.

    Article  CAS  PubMed  Google Scholar 

  23. H. Iwai and M. Yamamoto, Anal. Sci., 2019, 35, 665.

    Article  CAS  PubMed  Google Scholar 

  24. H. Iwai, Anal. Sci., 2017, 33, 1231.

    Article  CAS  PubMed  Google Scholar 

  25. S. Amir, M. Hafidi, L. Lemee, J. R. Bailly, G. Merlina, M. Kaemmerer, J. C. Revel, and A. Ambles, J. Anal. Appl. Pyrolysis, 2006, 77, 149.

    Article  CAS  Google Scholar 

  26. H. Yoshida, K. Sazawa, N. Wada, N. Hata, K. Marumo, M. Fukushima, and H. Kuramitz, Catena, 2018, 171, 22.

    Article  CAS  Google Scholar 

  27. M. Fukushima, M. Yamamoto, T. Komai, and K. Yamamoto, J. Anal. Appl. Pyrolysis, 2009, 86, 200.

    Article  CAS  Google Scholar 

  28. J. M. Arocena and C. Opio, Geoderma, 2003, 113, 1.

    Article  CAS  Google Scholar 

  29. A. Prieto-Fernandez, M. C. Villar, M. Carballas, and T. Carballas, Soil Biol. Biochem., 1993, 25, 1657.

    Article  Google Scholar 

  30. R. R. Blank, F. Allen, and J. A. Young, Soil Sci. Soc. Am. J., 1994, 58, 564.

    Article  CAS  Google Scholar 

  31. J. Chorover, P. M. Vitousek, D. A. Everson, A. M. Esperanza, and D. Turner, Biogeochemistry, 1994, 26, 115.

    Article  CAS  Google Scholar 

  32. R. Blank and D. Zamudio, Int. J. Wildl. Fire, 1998, 8, 79.

    Article  Google Scholar 

  33. J. D. Murphy, D. W. Johnson, W. W. Miller, R. F. Walker, E. F. Carroll, and R. R. Blank, J. Environ. Qual., 2006, 35, 479.

    Article  CAS  PubMed  Google Scholar 

  34. O. Francioso, D. Montecchio, P. Gioacchini, and C. Ciavatta, Appl. Geochemistry, 2005, 20, 537.

    Article  CAS  Google Scholar 

  35. D. Montecchio, O. Francioso, P. Carletti, D. Pizzeghello, S. Chersich, F. Previtali, and S. Nardi, J. Therm. Anal. Calorim., 2006, 83, 393.

    Article  CAS  Google Scholar 

  36. R. Josa, X. Arias, and A. Solé, “Soil Erosion and Degradation as a Consequence of Forest Fires” ed. M. Sala, J. L. Rubio, and E. Geoforma, 1994, Logroño, 29.

  37. C. E. Mullins, J. Soil Sci., 1977, 28, 233.

    Article  Google Scholar 

  38. S. M. Sertsu and P. A. Sanchez, Soil Sci. Soc. Am. J., 1978, 42, 940.

    Article  CAS  Google Scholar 

  39. P. G. Coble, C. E. Del Castillo, and B. Avril, Deep. Res. Part II Top. Stud. Oceanogr., 1998, 45, 2195.

    Article  CAS  Google Scholar 

  40. T. Ohno, A. Amirbahman, and R. Bro, Environ. Sci. Technol., 2008, 42, 186.

    Article  CAS  PubMed  Google Scholar 

  41. D. M. McKnight, E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, D. T. Andersen, E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, and D. T. Anderson, Limnol. Oceanogr., 2001, 46, 38.

    Article  CAS  Google Scholar 

  42. C. A. Stedmon, S. Markager, and R. Bro, Mar. Chem., 2003, 82, 239.

    Article  CAS  Google Scholar 

  43. P. Kowalczuk, M. J. Durako, H. Young, A. E. Kahn, W. J. Cooper, and M. Gonsior, Mar. Chem., 2009, 113, 182.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuto Sazawa or Hideki Kuramitz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazawa, K., Sugano, T. & Kuramitz, H. High-heat Effects on the Physical and Chemical Properties of Soil Organic Matter and Its Water-soluble Components in Japan’s Forests: A Comprehensive Approach Using Multiple Analytical Methods. ANAL. SCI. 36, 601–605 (2020). https://doi.org/10.2116/analsci.20SBP14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20SBP14

Keywords

Navigation