Skip to main content

Advertisement

Log in

Structural Characterization of Proteins Adsorbed at Nanoporous Materials

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A nanoporous material has been applied for the development of functional nanobiomaterials by utilizing its uniform pore structure and large adsorption capacity. The structure and stability of biomacromolecules, such as peptide, oligonucleotide, and protein, are primary factors to govern the performance of nanobiomaterials, so that their direct characterization methodologies are in progress. In this review, we focus on recent topics in the structural characterization of protein molecules adsorbed at a nanoporous material with uniform meso-sized pores. The thermal stabilities of the adsorbed proteins are also summarized to discuss whether the structure of the adsorbed protein molecules can be stabilized or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ogawa, J. Photochem. Photobiol. C, 2002, 3, 129.

    Article  CAS  Google Scholar 

  2. M. Hartmann, Chem. Mater., 2005, 17, 4577.

    Article  CAS  Google Scholar 

  3. A. Vinu, K. Z. Hossain, and K. Ariga, J. Nanosci. Nanotechnol., 2005, 5, 347.

    Article  CAS  PubMed  Google Scholar 

  4. A. Yamaguchi and N. Teramae, Anal. Sci., 2008, 24, 25.

    Article  CAS  PubMed  Google Scholar 

  5. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, and J. P. Hill, Bull. Chem. Soc. Jpn., 2012, 85, 1.

    Article  CAS  Google Scholar 

  6. C. Hofmann, A. Duerkop, and A. J. Baeumner, Angew. Chem. Int. Ed., 2019, 58, 12840.

    Article  CAS  Google Scholar 

  7. J. Kima, J. W. Gratea, and P. Wang, Chem. Eng. Sci., 2006, 61, 1017.

    Article  Google Scholar 

  8. S. Hudson, J. Cooney, and E. Magner, Angew. Chem. Int. Ed., 2008, 47, 8582.

    Article  CAS  Google Scholar 

  9. C.-H. Lee, T. Lin, and C. Mou, Nano Today, 2009, 4, 165.

    Article  CAS  Google Scholar 

  10. M. Hartmann and D. Jung, J. Mater. Chem., 2010, 20, 844.

    Article  CAS  Google Scholar 

  11. Z. Zhou and M. Hartmann, Chem. Soc. Rev., 2013, 42, 3894.

    Article  CAS  PubMed  Google Scholar 

  12. T. Jesionowski, J. Zdarta, and B. Krajewska, Adsorption, 2014, 20, 801.

    Article  CAS  Google Scholar 

  13. N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, and B. Åkerman, Adv. Colloid Interface Sci., 2014, 205, 339.

    Article  CAS  PubMed  Google Scholar 

  14. X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, and H.-C. Zhou, Chem. Soc. Rev., 2017, 46, 3386.

    Article  CAS  PubMed  Google Scholar 

  15. T. Itoh, A. Yamaguchi, T. Kyotani, T. Hanaoka, and F. Mizukami, Adv. Porous Mater., 2016, 4, 157.

    Article  Google Scholar 

  16. X. Yang, P. Qiu, J. Yang, Y. Fan, L. Wang, W. Jiang, X. Cheng, Y. Deng, and W. Luo, Small, 2019, 1904022.

    Google Scholar 

  17. F. Sancenón, L. Pascual, M. Oroval, E. Aznar, and R. Martínez-Máñez, Chemistryopen, 2015, 4, 418.

    Article  PubMed Central  PubMed  Google Scholar 

  18. J. M. Rosenholm, C. Sahlgren, and M. Lindén, Nanoscale, 2010, 2, 1870.

    Article  CAS  PubMed  Google Scholar 

  19. S. Alberti, G. J. A. A. Soler-Illia, and O. Azzaroni, Chem. Commun., 2015, 51, 6050.

    Article  CAS  Google Scholar 

  20. R. R. Castillo, A. Baeza, and M. Vallet-Regí, Biomater. Sci., 2017, 5, 353.

    Article  CAS  PubMed  Google Scholar 

  21. L. Han, X.-Y. Zhang, Y.-L. Wang, X. Li, X.-H. Yang, M. Huang, K. Hu, L.-H. Li, and Y. Wei, J. Control. Release, 2017, 259, 40.

    Article  CAS  PubMed  Google Scholar 

  22. Z. Gu, A. Biswas, M. Zhao, and Y. Tang, Chem. Soc. Rev., 2011, 40, 3638.

    Article  CAS  PubMed  Google Scholar 

  23. C. Bharti, U. Nagaich, A. K. Pal, and N. Gulati, Int. J. Pharm. Invest., 2015, 5, 124.

    Article  CAS  Google Scholar 

  24. H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, and S. Inagaki, Chem. Mater., 2000, 12, 3301.

    Article  CAS  Google Scholar 

  25. T. Shimomura, T. Itoh, T. Sumiya, T. Hanaoka, F. Mizukami, and M. Ono, Sens. Actuators B, 2011, 153, 361.

    Article  CAS  Google Scholar 

  26. S. Hudson, J. Cooney, B. K. Hodnett, and E. Magner, Chem. Mater., 2007, 19, 2049.

    Article  CAS  Google Scholar 

  27. B. Nohair, P. T. H. Thao, V. T. H. Nguyen, P. Q. Tien, D. T. Phuong, L. G. Hy, and S. Kaliaguine, J. Phys. Chem. C, 2012, 116, 10904.

    Article  CAS  Google Scholar 

  28. V. Gascón, I. Díaz, R. M. Blanco, and C. Márquez-Álvarez, RSC Adv., 2014, 4, 34356.

    Article  Google Scholar 

  29. Z. Zhou, F. Piepenbreier, V. R. R. Marthala, K. Karbacher, and M. Hartmann, Catal. Today, 2015, 243, 173.

    Article  CAS  Google Scholar 

  30. J. Wei, Y. Ren, W. Luo, Z. Sun, X. Cheng, Y. Li, Y. Deng, A. A. Elzatahry, D. Al-Dahyan, and D. Zhao, Chem. Mater., 2017, 29, 2211.

    Article  CAS  Google Scholar 

  31. X. Yang, X. Cheng, H. Song, J. Ma, P. Pan, A. A. Elzatahry, J. Su, and Y. Deng, Adv. Healthc. Mater., 2018, 7, 1800149.

    Article  Google Scholar 

  32. A. Trifonov, K. Herkendell, R. Tel-Vered, O. Yehezkeli, M. Woerner, and I. Willner, ACS Nano, 2013, 7, 11358.

    Article  CAS  PubMed  Google Scholar 

  33. C. O. Ania, A. Gomis-Berenguer, J. Dentzer, and C. Vix-Guterl, J. Electroanal. Chem., 2018, 808, 372.

    Article  CAS  Google Scholar 

  34. T. Itoh, Y. Shibuya, A. Yamaguchi, Y. Hoshikawa, O. Tanaike, T. Tsunoda, T. Hanaoka, S. Hamakawa, F. Mizukami, A. Hayashi, T. Kyotani, and G. D. Stucky, J. Mater. Chem. A, 2017, 5, 20244.

    Article  CAS  Google Scholar 

  35. Y. Chen, P. Li, J. A. Modica, R. J. Drout, and O. Farha, J. Am. Chem. Soc., 2018, 140, 5678.

    Article  CAS  PubMed  Google Scholar 

  36. G. Cheng, W. Li, L. Ha, X. Han, S. Hao, Y. Wan, Z. Wang, F. Dong, X. Zou, Y. Mao, and S.-Y. Zheng, J. Am. Chem. Soc., 2018, 140, 7282.

    Article  CAS  PubMed  Google Scholar 

  37. C. Bernal, A. Illanes, and L. Wilson, Langmuir, 2014, 30, 3557.

    Article  CAS  PubMed  Google Scholar 

  38. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodoriguez-Reinoso, J. Rouquerol, and K. S. W. Sing, Pure Appl. Chem., 2015, 87, 1051.

    Article  CAS  Google Scholar 

  39. K. Miyasaka, A. V. Neimark, and O. Terasaki, J. Phys. Chem. C, 2009, 113, 791.

    Article  CAS  Google Scholar 

  40. M. A. Smith, M. G. Ilasi, and A. Zoelle, J. Phys. Chem. C, 2013, 117, 17493.

    Article  CAS  Google Scholar 

  41. A. Galarneau, H. Cambon, F. D. Renzo, and F. Fajula, Langmuir, 2001, 17, 8328.

    Article  CAS  Google Scholar 

  42. A. Galarneau, F. Villemot, J. Rodriguez, F. Fajula, and B. Coasne, Langmuir, 2014, 30, 13266.

    Article  CAS  PubMed  Google Scholar 

  43. M. Kruk, M. Jaroniec, C. H. Ko, and R. Ryoo, Chem. Mater., 2000, 12, 1961.

    Article  CAS  Google Scholar 

  44. P. I. Ravikovitch and A. V. Neimark, J. Phys. Chem. B, 2001, 105, 6817.

    Article  CAS  Google Scholar 

  45. A. Endo, T. Yamamoto, Y. Inagaki, K. Iwakabe, and T. Ohmori, J. Phys. Chem. C, 2008, 112, 9034.

    Article  CAS  Google Scholar 

  46. X. Xie, M. Satozawa, K. Kunimori, and S. Hayashi, Micropor. Mesopor. Mater., 2000, 39, 25.

    Article  CAS  Google Scholar 

  47. M. Ide, M. El-Roz, E. D. Canck, A. Vicente, T. Planckaert, T. Bogaerts, I. van Driessche, F. Lynen, V. van Speybroeck, F. Thybault-Starzyk, and P. van der Voort, Phys. Chem. Chem. Phys., 2013, 15, 642.

    Article  CAS  PubMed  Google Scholar 

  48. A. Yamaguchi, Y. Edanami, T. Yamaguchi, Y. Shibuya, N. Fukaya, and T. Kohzuma, Bull. Chem. Soc. Jpn., 2020, 93, 630.

    Article  CAS  Google Scholar 

  49. J. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, and M. Lindén, Langmuir, 2007, 23, 4315.

    Article  CAS  PubMed  Google Scholar 

  50. S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, and T. Yamaguchi, Phys. Chem. Chem. Phys., 2006, 8, 3223.

    Article  CAS  PubMed  Google Scholar 

  51. S. Kittaka, K. Sou, T. Yamaguchi, and K. Tozaki, Phys. Chem. Chem. Phys., 2009, 11, 8538.

    Article  CAS  PubMed  Google Scholar 

  52. S. Jähnert, F. V. Chávez, G. E. Schaumann, A. Schreiber, M. Schönhoff, and G. H. Findenegg, Phys. Chem. Chem. Phys., 2008, 10, 6039.

    Article  PubMed  Google Scholar 

  53. P. Smirnov, T. Yamaguchi, S. Kittaka, S. Takahara, and Y. Kuroda, J. Phys. Chem. B, 2000, 104, 5498.

    Article  CAS  Google Scholar 

  54. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, and T. Yamaguchi, J. Phys. Chem. B, 1999, 103, 5814.

    Article  CAS  Google Scholar 

  55. D. C. M. Casillas, M. P. Longinotti, M. M. Bruno, F. V. Chávez, R. H. Acosta, and H. R. Corti, J. Phys. Chem. C, 2018, 122, 3638.

    Article  Google Scholar 

  56. S. A. Yamada, S. T. Hung, W. H. Thompson, and M. D. Fayer, J. Chem. Phys., 2020, 152, 154704.

    Article  CAS  PubMed  Google Scholar 

  57. M. Aso, K. Ito, H. Sugino, K. Yoshida, T. Yamada, O. Yamamuro, S. Inagaki, and T. Yamaguchi, Pure Appl. Chem., 2012, 85, 289.

    Article  Google Scholar 

  58. G. Buntkowsky, H. Breitzke, A. Adamczyk, F. Roelofs, T. Emmler, E. Gedat, B. Grünberg, Y. Xu, H.-H. Limbach, I. Shenderovich, A. Vyalikh, and G. Findenegg, Phys. Chem. Chem. Phys., 2007, 9, 4843.

    Article  CAS  PubMed  Google Scholar 

  59. A. Yamaguchi, M. Namekawa, T. Itoh, and N. Teramae, Anal. Sci., 2012, 28, 1065.

    Article  CAS  PubMed  Google Scholar 

  60. D. Liu, Y. Zhang, C.-C. Chen, C.-Y. Mou, P. H. Poole, and S.-H. Chen, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 9570.

    Article  CAS  PubMed Central  Google Scholar 

  61. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.-Y. Mou, and S.-H. Chen, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 18387.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. K.-H. Liu, Y. Zhang, J.-J. Lee, C.-C. Chen, Y.-Q. Yeh, S.-H. Chen, and C.-Y. Mou, J. Chem. Phys., 2013, 139, 064502.

    Article  PubMed  Google Scholar 

  63. A. Yamaguchi, T. Yoda, S. Suzuki, K. Morita, and N. Teramae, Anal. Sci., 2006, 22, 1501.

    Article  CAS  PubMed  Google Scholar 

  64. Y. Fu, F. Ye, W. G. Sanders, M. M. Collinson, and D. A. Higgins, J. Phys. Chem. B, 2006, 110, 9164.

    Article  CAS  PubMed  Google Scholar 

  65. M. Gil, S. Wang, J. A. Organero, L. Teruel, H. Garcia, and A. Douhal, J. Phys. Chem. C, 2009, 113, 11614.

    Article  CAS  Google Scholar 

  66. M. Gil, C. Martin, J. A. Organero, M. T. Navarro, A. Corma, and A. Douhal, J. Phys. Chem. C, 2010, 114, 6311.

    Article  CAS  Google Scholar 

  67. D. A. Bryce, J. P. Kitt, and J. M. Harris, Anal. Chem., 2017, 89, 2755.

    Article  CAS  PubMed  Google Scholar 

  68. T. Sato, K. Hata, and K. Nakatani, Anal. Sci., 2017, 33, 647.

    Article  CAS  PubMed  Google Scholar 

  69. K. Yoshida, T. Inoue, M. Torigoe, T. Yamada, K. Shibata, and T. Yamaguchi, J. Chem. Phys., 2018, 149, 124502.

    Article  CAS  PubMed  Google Scholar 

  70. H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, and S. Inagaki, Micropor. Mesopor. Mater., 2001, 44-45, 755.

    Article  Google Scholar 

  71. A. Yamaguchi, K. Taki, J. Kijima, Y. Edanami, and Y. Shibuya, Anal. Sci., 2018, 34, 1393.

    Article  CAS  PubMed  Google Scholar 

  72. A. Yamaguchi, C. Kashimura, M. Aizawa, and Y. Shibuya, ACS Omega, 2020, 5, 22993.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. H. Ikemoto, S. Tubasum, T. Pullerits, J. Ulstrup, and Q. Chi, J. Phys. Chem. C, 2013, 117, 2868.

    Article  CAS  Google Scholar 

  74. A. M. Clemments, P. Botella, and C. C. Landry, J. Am. Chem, Soc., 2017, 139, 3978.

    Article  CAS  PubMed  Google Scholar 

  75. L. M. Karlsson, P. Tengwall, I. Lundström, and H. Arwin, J. Colloid Interface Sci., 2003, 266, 40.

    Article  CAS  PubMed  Google Scholar 

  76. J. Deere, M. Serantoni, K. J. Edler, B. K. Hodnett, J. G. Wall, and E. Magner, Langmuir, 2004, 20, 532.

    Article  CAS  PubMed  Google Scholar 

  77. F. Krohm, H. Didzoleit, M. Schulze, C. Dietz, R. W. Stark, C. Hess, B. Stühn, and A. Brunsen, Langmuir, 2014, 30, 369.

    Article  CAS  PubMed  Google Scholar 

  78. A. Yamaguchi, K. Katayama, and S. A. Holt, Anal. Sci., 2020, 36, 1331.

    Article  CAS  PubMed  Google Scholar 

  79. S. Isaksson, E. B. Watkins, K. L. Browning, T. K. Lind, M. Cárdenas, K. Hedfalk, F. Höök, and M. Andersson, Nano Lett., 2017, 17, 476.

    Article  CAS  PubMed  Google Scholar 

  80. W. Ogieglo, H. Wormeester, K.-J. Eichhorn, M. Wessling, and N. E. Bens, Prog. Polym. Sci., 2015, 42, 42.

    Article  CAS  Google Scholar 

  81. J. Daillant and A. Gibaud (ed.), “X-ray and Neutron Reflectivity—Principles and Applications”, 2009, Springer-Verlag, Berlin, Heiderberg.

    Google Scholar 

  82. Y. Shibuya, K. Katayama, K. Akutsu-Suyama, and A. Yamaguchi, ASC Omega, 2019, 4, 17890.

    Article  CAS  Google Scholar 

  83. M. Y. Chen and M. J. Sailor, Anal. Chem., 2011, 83, 7186.

    Article  CAS  PubMed  Google Scholar 

  84. K. Hotta, A. Yamaguchi, and N. Teramae, ACS Nano, 2012, 6, 1541.

    Article  CAS  PubMed  Google Scholar 

  85. H. Arafune, A. Yamaguchi, K. Hotta, T. Itoh, and N. Teramae, Anal. Sci., 2013, 29, 187.

    Article  CAS  PubMed  Google Scholar 

  86. H. Arafune, K. Hotta, T. Itoh, N. Teramae, and A. Yamaguchi, Anal. Sci., 2017, 33, 473.

    Article  CAS  PubMed  Google Scholar 

  87. T. Itoh, R. Ishii, T. Ebina, T. Hanaoka, Y. Fukushima, and F. Mizukami, Bioconjugate Chem., 2006, 17, 236.

    Article  CAS  Google Scholar 

  88. Y. Urabe, T. Shiomi, T. Itoh, A. Kawai, T. Tsunoda, F. Mizukami, and K. Sakaguchi, ChemBioChem, 2007, 8, 668.

    Article  CAS  PubMed  Google Scholar 

  89. T. Itoh, R. Ishii, T. Ebina, T. Hanaoka, T. Ikeda, Y. Urabe, Y. Fukushima, and F. Mizukami, Biotechnol. Bioeng., 2007, 97, 200.

    Article  CAS  PubMed  Google Scholar 

  90. J. Méndez, M. M. Cruz, Y. Delgado, C. M. Figueroa, E. A. Orellano, M. Morales, A. Monteagudo, and K. Griebenow, Mol. Pharm., 2014, 11, 102.

    Article  PubMed  Google Scholar 

  91. K.-C. Kao, C.-H. Lee, T.-S. Lin, and C.-Y. Mou, J. Mater. Chem., 2010, 20, 4653.

    Article  CAS  Google Scholar 

  92. C.-H. Lee, J. Lang, C.-W. Yen, P.-C. Shih, T.-S. Lin, and C.-Y. Mou, J. Phys. Chem. B, 2005, 109, 12277.

    Article  CAS  PubMed  Google Scholar 

  93. Y. Pan, H. Li, J. Farmakes, F. Xiao, B. Chen, S. Ma, and Z. Yang, J. Am. Chem. Soc., 2018, 140, 16032.

    Article  CAS  PubMed  Google Scholar 

  94. Y.-C. Lai, Y.-F. Chen, and Y.-W. Chiang, Plos One, 2013, 8, e68264.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. V. C. Özalp, A. Pinto, E. Nikulina, A. Chuvilin, and T. Schäfer, Part. Part. Syst. Charact., 2014, 31, 161.

    Article  Google Scholar 

  96. C. Torre, A. Agostini, L. Mondragón, M. Orzáez, F. Sancenón, R. Martínez-Máñez, M. D. Marcos, P. Amorós, and E. Pérez-Payá, Chem. Commun., 2014, 50, 3184.

    Article  Google Scholar 

  97. K.-C. Kao, T.-S. Lin, and C.-Y. Mou, J. Phys. Chem. C, 2014, 118, 6734.

    Article  CAS  Google Scholar 

  98. Y. He, M. Wang, H. Zhang, Y. Zhang, Y. Gao, and S. Wang, J. Colloid Interface Sci., 2020, 560, 690.

    Article  CAS  PubMed  Google Scholar 

  99. S. E. Lehman, I. A. Mudunkotuwa, V. H. Grassian, and S. C. Larsen, Langmuir, 2016, 32, 731.

    Article  CAS  PubMed  Google Scholar 

  100. L. C. Sang and M.-O. Coppens, Phys. Chem. Chem. Phys., 2011, 13, 6689.

    Article  CAS  PubMed  Google Scholar 

  101. Z. Ma, J. Bai, Y. Wang, and X. Jiang, ACS Appl. Mater. Interfaces, 2014, 6, 2431.

    Article  CAS  PubMed  Google Scholar 

  102. J. Kijima, Y. Shibuya, K. Katayama, T. Itoh, H. Iwase, Y. Fukushima, M. Kubo, and A. Yamaguchi, J. Phys. Chem. C, 2018, 122, 15567.

    Article  CAS  Google Scholar 

  103. J. Siefker, R. Biehl, M. Kruteva, A. Feoktystov, and M.-O. Coppens, J. Am. Chem. Soc., 2018, 140, 12720.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. T. Imae, T. Kanaya, M. Furusaka, and N. Torikai (ed.), “Neutrons in Soft Mater”, 2011, John Wiley and Sons, Hoboken, NJ.

    Book  Google Scholar 

  105. Y. Chen, V. Lykourinou, C. Vetromile, T. Hoang, L.-J. Ming, R. W. Larsen, and S. Ma, J. Am. Chem. Soc., 2012, 134, 13188.

    Article  CAS  PubMed  Google Scholar 

  106. Y. Masuda, S. Kugimiya, K. Murai, A. Hayashi, and K. Kato, Colloids Surf. B, 2013, 101, 26.

    Article  CAS  Google Scholar 

  107. Y. Masuda, S. Kugimiya, Y. Kawachi, and K. Kato, RSC Adv., 2014, 4, 3573.

    Article  CAS  Google Scholar 

  108. Y. S. Chaudhary, S. K. Manna, S. Mazumdar, and D. Khushalani, Micropor. Mesopor. Mater., 2008, 109, 535.

    Article  CAS  Google Scholar 

  109. Y. Qu, C. Kong, H. Zhou, E. Shen, J. Wang, W. Shen, X. Zhang, Z. Zhang, Q. Ma, and J. Zhou, J. Mol. Catal. B, 2014, 99, 136.

    Article  CAS  Google Scholar 

  110. B. Chen, C. Lei, Y. Shin, and J. Liu, Biochem. Biophys. Res. Commun., 2009, 390, 1177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. M. Falahati, L. Ma’mani, A. A. Saboury, A. Shafiee, A. Foroumadi, and A. R. Badiei, Biochim. Biophys. Acta, 2011, 1814, 1195.

    Article  CAS  PubMed  Google Scholar 

  112. K. Murai, T. Nonoyama, T. Saito, and K. Kato, Catal. Sci. Technol., 2012, 2, 310.

    Article  CAS  Google Scholar 

  113. R. Ravindra, S. Zhao, H. Gies, and R. Winter, J. Am. Chem. Soc., 2004, 126, 12224.

    Article  CAS  PubMed  Google Scholar 

  114. Y. Shibuya, T. Itoh, S. Matsuura, and A. Yamaguchi, Anal. Sci., 2015, 31, 1069.

    Article  CAS  PubMed  Google Scholar 

  115. H. Arafune, A. Yamaguchi, M. Namekawa, Y. Sato, T. Itoh, R. Yoshida, and N. Teramae, Nat. Commun., 2014, 5, 5151.

    Article  CAS  PubMed  Google Scholar 

  116. T. Masuda, Y. Shibuya, S. Arai, S. Kobayashi, S. Suzuki, J. Kijima, T. Itoh, Y. Sato, S. Nishizawa, and A. Yamaguchi, Langmuir, 2018, 34, 5545.

    Article  CAS  PubMed  Google Scholar 

  117. A. Yamaguchi, K. Nasu, N. Wakaume, Y. Shibuya, J. Kijima, and T. Itoh, Chem. Lett., 2016, 45, 1425.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by JSPS Kakenhi Grant nos. JP16H04160 and JP17K19022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yamaguchi.

Additional information

Akira Yamaguchireceived his Ph.D. degree in 2000 from Tohoku University. He worked as a postdoctoral fellow at Tokushima University (2000 – 2002), and as assistant professor at Tohoku University (2002 – 2009). He became an associate professor at Ibaraki University in 2010, and has been a full professor there since 2017. His research interest is development of analytical tools based on nanobiomaterials.

Masahiro Saigareceived his bachelorʼs degree in 2020 from Ibaraki University. He is a Master student of Graduate School of Science and Engineering, Ibaraki University. His research interest is development of a fluorescence-based biosensor.

Daiki Inabareceived his bachelorʼs degree in 2020 from Ibaraki University. He is a Master student of Graduate School of Science and Engineering, Ibaraki University. His research interest is development of an invasive biosensor based on inorganic nanoporous materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, A., Saiga, M., Inaba, D. et al. Structural Characterization of Proteins Adsorbed at Nanoporous Materials. ANAL. SCI. 37, 49–59 (2021). https://doi.org/10.2116/analsci.20SAR05

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20SAR05

Keywords

Navigation