Skip to main content
Log in

A Sensitive Thrombin Aptasensor Based on Target Circulation Strategy

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A convenient homogeneous electrochemical thrombin sensor based on potential-assisted Au-S deposition and a dual signal amplification strategy was established in this study. Potential-assisted Au-S deposition does not require the modification of the gold electrode, thus eliminating the tedious pre-modification of the electrode. To better amplify the output signal, both ends of the signal hairpin probes were modified with a new electroactive substance, tetraferrocene, which was synthesized by the authors. Thrombin was immediately hybridized with a thiol-modified probe to open the stem-loop structure. After chain hybridization, thrombin was replaced and participated in the next round of the reaction; thus, the cascade amplification of the signal was realized. The hybrid chain formed an Au-S deposition under potential assistance, and the electrochemical signal of tetraferrocene could then be measured through differential pulse voltammetry (DPV) and consequently used for the quantitative detection of target thrombin. In addition, the detection limit of thrombin was as low as 0.06 pmol/L, and the detection of common interfering proteins was highly specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Nierodzik and S. Karpatkin, Cancer Cell, 2006, 10, 355.

    Google Scholar 

  2. A. D. Ellington and J. W. Szostak, Nature, 1990, 346, 818.

    Article  CAS  PubMed  Google Scholar 

  3. C. Tuerk and L. Gold, Science, 1990, 249, 505.

    Article  CAS  PubMed  Google Scholar 

  4. H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. Lee, J. Am. Chem. Soc., 2005, 127, 11906.

    Article  CAS  PubMed  Google Scholar 

  5. G. Liu, J. Li, D. Q. Feng, J. J. Zhu, and W. Wang, Anal. Chem., 2016, 89, 1002.

    Article  PubMed  Google Scholar 

  6. S. F. Liu, C. X. Zhang, J. J. Ming, C. F. Wang, T. Liu, and F. Li, Chem. Commun., 2013, 49, 7947.

    Article  CAS  Google Scholar 

  7. R. Hu, T. Liu, X. B. Zhang, S. Y. Huan, C. C. Wu, T. Fu, and W. H. Tan, Anal. Chem., 2014, 86, 5009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Baeissa, N. Dave, B. D. Smith, and J. W. Liu, ACS Appi. Mater. Interfaces, 2010, 2, 3594.

    Article  CAS  Google Scholar 

  9. Y. Y. Zhang, Z. W. Tang, J. Wang, H. Wu, A. H. Maham, and Y. H. Lin, Anal. Chem., 2010, 82, 6440.

    Article  CAS  PubMed  Google Scholar 

  10. X. L. Su and Y. B. Li, Biosens. Bioelectron., 2006, 21, 840.

    Article  Google Scholar 

  11. E. H. Xiong, X. X. Yan, X. H. Zhang, Y. Q. Liu, J. W. Zhou, and J. H. Chen, Biosens. Bioelectron., 2017, 87, 732.

    Article  CAS  PubMed  Google Scholar 

  12. E. H. Xiong, X. H. Zhang, Y. Q. Liu, J. W. Zhou, P. Yu, X. Y. Li, and J. H. Chen, Anal. Chem., 2015, 87, 7291.

    Article  CAS  PubMed  Google Scholar 

  13. E. H. Xiong, Z. Z. Li, X. H. Zhang, J. W. Zhou, X. X. Yan, Y. Q. Liu, and J. H. Chen, Anal. Chem., 2017, 89, 8830.

    Article  CAS  PubMed  Google Scholar 

  14. X. Y. Cao, J. F. Xia, H. Z. Liu, F. F. Zhang, Z. H. Wang, and L. Lu, Sens. Actuators, B, 2017, 239, 166.

    Article  CAS  Google Scholar 

  15. A. Joneja and X. Huang, Anal. Biochem., 2011, 414, 58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Niranjan, T. E. Ouldridge, P. Šulc, J. M. Schaeffer, B. Yurke, A. A. Louis, J. P. K. Doye, and E. Winfree, Nucleic Acids Res., 2013, 41, 10641.

    Article  Google Scholar 

  17. T. Yoshimura, T. Suzuki, S. Mineki, and S. Ohuchi, Plos One, 2015, 10, e0136532.

    Article  PubMed  PubMed Central  Google Scholar 

  18. M. G. Mohsen and E. T. Kool, Accounts Chem. Res., 2016, 49, 2540.

    Article  CAS  Google Scholar 

  19. J. Li, C. Xiong, and Y. Liu, Front. Plant Sci., 2016, 7, 1956.

    PubMed  PubMed Central  Google Scholar 

  20. M. Schwarzkopf and N. A. Pierce, Nucleic Acids Res., 2016, 44, e129.

    PubMed  PubMed Central  Google Scholar 

  21. H. M. Choi and V. A. Beck, ACS Nano, 2014, 8, 4284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Q. Yu, J. P. Wang, M. Zhao, L. R. Hong, Y. Q. Chai, R. Yuan, and Y. Zhou, Biosens. Bioelectron., 2016, 77, 442.

    Article  CAS  PubMed  Google Scholar 

  23. X. Z. Wang, X. L. Liu, T. Hou, W. Li and F. Li, Sens. Actuators, B, 2015, 208, 575.

    Article  CAS  Google Scholar 

  24. X. Liu, W. Li, T. Hou, S. S. Dong, G. H. Yu, and F. Li, Anal. Chem., 2015, 87, 4030.

    Article  CAS  PubMed  Google Scholar 

  25. D. E. Weisshaar, B. D. Lamp, and M. D. Porter, J. Am. Chem. Soc., 1992, 114, 5860.

    Article  CAS  Google Scholar 

  26. H. Ron and I. Rubinstein, J. Am. Chem. Soc., 1998, 120, 13444.

    Article  CAS  Google Scholar 

  27. J. A. Hansen, J. Wang, A. N. Kawde, Y. Xiang, K. V. Gothelf, and G. Collins, J. Am. Chem. Soc., 2006, 7, 2228.

    Article  Google Scholar 

  28. Z. H. Yang, Y. Zhuo, R. Yuan, and Y. Q. Chai, ACS Appi. Mater. Interfaces, 2015, 19, 10308.

    Article  Google Scholar 

  29. Y. Yang, Z. H. Yang, J. J. Lv, R. Yuan, and Y. Q. Chai, Taianta, 2017, 169, 44.

    Article  CAS  Google Scholar 

  30. M. A. Rahman, J. I. Son, M. S. Won, and Y. B. Shim, Anal. Chem., 2009, 81, 6604.

    Article  CAS  PubMed  Google Scholar 

  31. Y. R. Li, Y. Y. Chang, J. Ma, Z. Y. Wu, R. Yuan, and Y. Q. Chai, Anal. Chem., 2019, 91, 6127.

    Article  CAS  PubMed  Google Scholar 

  32. L. Cheng, C. Xu, H. F. Cui, F. S. Liao, N. Hong, G. Q. Ma, J. Xiong, and H. Fan, Anal. Chim. Acta, 2020, 111, 1.

    Article  Google Scholar 

  33. J. M. Yang, B. T. Dou, R. Yuan, and Y. Xiang, Anal. Chem., 2017, 89, 5138.

    Article  CAS  PubMed  Google Scholar 

  34. J. Zhu, J. Gan, J. Wu, and X. Ju, Anal. Chem., 2018, 90, 5503.

    Article  CAS  PubMed  Google Scholar 

  35. S. Su, H. F. Sun, W. F. Cao, J. Chao, H. Z. Peng, X. L. Zuo, L. H. Yuwen, C. H. Fan, and L. H. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 6826.

    Article  CAS  PubMed  Google Scholar 

  36. L. L. Wang, R. N. Ma, L. S. Jiang, L. P. Jia, W. L. Jia, and H. S. Wang, Biosens. Bioelectron., 2017, 92, 390.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (81860682, 81872968, 81560625, 81660658), the Natural Science Foundation of Jiangxi Province (20202BABL206152) and Education Foundation of Jiangxi Province(GJJ180654).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfeng Jiang or Jing Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Cheng, M., Wei, G. et al. A Sensitive Thrombin Aptasensor Based on Target Circulation Strategy. ANAL. SCI. 37, 1221–1226 (2021). https://doi.org/10.2116/analsci.20P431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P431

Keywords

Navigation