Skip to main content
Log in

Magnetic Dispersive Solid Phase Extraction Using Recycled-graphite for GO-Fe3O4-dithizone Composite Combined with FAAS for Determination of Lead in Environmental Samples

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Magnetic dispersive solid phase extraction (MdSPE) was developed to determine the concentration of lead (Pb) in real water samples, while graphene oxide-magnetite-dithizone (GO-Fe3O4-DTZ) from the used graphite tubes (recycled graphite) of electrothermal technique was simply employed as a new sorbent to improve extraction efficiency, separated by external magnetic field and analyzed with FAAS. The synthesized sorbent was evaluated for its surface property, functional group and surface morphology by Zeta potential, Fourier transform infrared spectrophotometer (FTIR), and scanning electron microscope (SEM), respectively. The relevant measurement parameters, such as pH, extraction time, type and concentration of eluent, sample volume and reusability, were optimized. Under the optimal conditions, preconcentration factor was 13.33. The limit of detection (LOD) and limit of quantitation (LOQ) obtained were 0.070 and 0.23 mg/L, respectively. The relative standard deviation (%RSD) was 3.41%. Recovery values were 90.1 – 123%. In addition, the robustness of the method was affirmed in terms of tolerance limit obtained from interference studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry, “Toxicological Profile for Lead”, 3rd ed., 2019, Atlanta, Georgia.

    Google Scholar 

  2. Pollution Control Department, Water Quality Standards, http://www.pcd.go.th/info_serv/reg_std_water01.html.

  3. World Health Organization, World Heal. Organ., 2010, 6.

    Google Scholar 

  4. M. A. Farajzadeh and A. Mohebbi, J. Chromatogr. A, 2018, 1532, 10.

    Article  CAS  PubMed  Google Scholar 

  5. M. A. Habila, Z. A. Alothman, E. Yilmaz, E. A. Alabdullkarem, and M. Soylak, Microchem. J., 2019, 148, 214.

    Article  CAS  Google Scholar 

  6. R. Ahmadi, G. Kazemi, A. M. Ramezani, and A. Safavi, Microchem. J., 2019, 145, 501.

    Article  CAS  Google Scholar 

  7. R. A. Zounr, M. Tuzen, N. Deligonul, and M. Y. Khuhawar, Food Chem., 2018, 253, 277.

    Article  CAS  PubMed  Google Scholar 

  8. M. Saraji and H. Ghambari, J. Chromatogr. A, 2018, 1574, 27.

    Article  CAS  PubMed  Google Scholar 

  9. T. Tolessa, Z. Q. Tan, Y. G. Yin, and J. F. Liu, Talanta, 2018, 176, 77.

    Article  CAS  PubMed  Google Scholar 

  10. M. Mirzaei, M. Behzadi, N. M. Abadi, and A. Beizaei, J. Hazard. Mater., 2011, 186, 1739.

    Article  CAS  PubMed  Google Scholar 

  11. A. Thongsaw, W. C. Chaiyasith, R. Sananmuang, G. M. Ross, and R. J. Ampiah-Bonney, Food Chem., 2017, 279, 453.

    Article  Google Scholar 

  12. A. Thongsaw, R. Sananmuang, Y. Udnan, G. M. Ross, and W. C. Chaiyasith, Spectrochim. Acta, Part B, 2019, 152, 102.

    Article  CAS  Google Scholar 

  13. K. Shrivas and D. K. Patel, Food Chem., 2011, 124, 1673.

    Article  CAS  Google Scholar 

  14. Z. Tahmasebi, S. S. H. Davarani, H. Ebrahimzadeh, and A. A. Asgharinezhad, Microchem. J., 2018, 143, 212.

    Article  CAS  Google Scholar 

  15. A. Fashi, M. R. Yaftian, and A. Zamani, Food Chem., 2017, 221, 714.

    Article  CAS  PubMed  Google Scholar 

  16. L. Van Tan, T. Q. Hieu, and N. Van Cuong, J. Anal. Methods Chem., 2015, 2015, 15.

    Google Scholar 

  17. M. Soylak, L. Elci, Y. Akkaya, and M. Dogan, Anal. Lett., 2007, 35, 487.

    Article  Google Scholar 

  18. E. Yilmaz and M. Soylak, Talanta, 2013, 116, 882.

    Article  CAS  PubMed  Google Scholar 

  19. W. Zhong, T. Ren, and L. Zhao, J. Food Drug Anal., 2015, 24, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  20. G. Blanchet-Chouinard and D. Lariviere, Talanta, 2018, 179, 300.

    Article  CAS  PubMed  Google Scholar 

  21. M. Daye, B. Ouddane, J. Halwani, and M. Hamzeh, Sci. World J., 2013, 2013.

  22. M. Soleimani, M. Saleh, A. Morsali, A. Khani, and M. Ghahraman, J. Hazard. Mater., 2011, 189, 371.

    Article  CAS  PubMed  Google Scholar 

  23. A. Rohanifar, L. B. Rodriguez, A. M. Devasurendra, N. Alipourasiabi, J. L. Anderson, and J. R. Kirchho, Talanta, 2018, 188, 570.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Yin, M. Chen, J. Peng, J. Liu, and G. Jiang, Talanta, 2010, 81, 1788.

    Article  CAS  PubMed  Google Scholar 

  25. J. Rasc, A. Azzouz, S. Kumar, S. Soo, E. Ballesteros, M. Zhang, and K. Kim, Trends Anal. Chem., 2018, 108, 347.

    Article  Google Scholar 

  26. J. Zheng, J. Huang, Q. Yang, C. Ni, X. Xie, Y. Shi, J. Sun, F. Zhu, and G. Ouyang, Trends Anal. Chem., 2018, 108, 135.

    Article  CAS  Google Scholar 

  27. P. K. Boruah, P. Borthakur, and M. R. Das, “Nanoscale Materials in Water Purification”, 2019, Elsevier Inc., 473.

    Book  Google Scholar 

  28. M. Krawczyk and E. Stanisz, Talanta, 2016, 161, 384.

    Article  CAS  PubMed  Google Scholar 

  29. E. Yavuz, Ş. Tokalioǧlu, and Ş. Patat, Microchem. J., 2018, 142, 85.

    Article  CAS  Google Scholar 

  30. A. Babaei, M. Zeeb, and A. Es-haghi, J. Sci. Food Agric., 2018, 98, 3571.

    Article  CAS  PubMed  Google Scholar 

  31. M. Faraji, Y. Yamini, and M. Rezaee, Talanta, 2010, 81, 831.

    Article  CAS  PubMed  Google Scholar 

  32. Z. Es, G. R. Bardajee, and S. Azimi, Microchem. J., 2016, 127, 170.

    Article  Google Scholar 

  33. J. Chen, Y. Wang, X. Wei, P. Xu, W. Xu, R. Ni, and J. Meng, Talanta, 2018, 188, 454.

    Article  CAS  PubMed  Google Scholar 

  34. N. Ozkantar, E. Yilmaz, M. Soylak, and M. Tuzen, Food Chem., 2020, 321, 126737.

    Article  CAS  PubMed  Google Scholar 

  35. Z. Fan and W. Zhou, Spectrochim. Acta, Part B, 2006, 61, 870.

    Article  Google Scholar 

  36. F. Shemirani, M. Baghdadi, M. Ramezani, and M. R. Jamali, Anal. Chim. Acta, 2005, 534, 163.

    Article  CAS  Google Scholar 

  37. L. Zhang, Z. Xiong, L. Zhang, and B. Yu, Anal. Methods, 2015, 7, 2050.

    Article  CAS  Google Scholar 

  38. X. Sun, D. Haas, and C. Lockhart, Phosphorus, Sulfur, and Silicon, 2017, 192, 376.

    Article  CAS  Google Scholar 

  39. C. W. Phetphaisit, S. Yuanyang, and W. C. Chaiyasith, J. Hazard. Mater., 2016, 301, 163.

    Article  CAS  PubMed  Google Scholar 

  40. H. Ebrahimzadeh, A. A. Asgharinezhad, E. Moazzen, M. M. Amini, and O. Sadeghi, J. Food Compos. Anal., 2015, 41, 74.

    Article  CAS  Google Scholar 

  41. M. Tuzen, K. O. Saygi, and M. Soylak, J. Hazard. Mater., 2008, 152, 632.

    Article  CAS  PubMed  Google Scholar 

  42. B. T. Zaman, A. F. Erulaş, D. S. Chormey, and S. Bakirdere, Food Chem., 2020, 303, 125396.

    Article  CAS  PubMed  Google Scholar 

  43. A. H. El-Sheikh, F. S. Nofal, and M. H. Shtaiwi, J. Environ. Chem. Eng., 2019, 7, 103229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wipharat Chuachuad Chaiyasith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaikhan, P., Udnan, Y., Ampiah-Bonney, R.J. et al. Magnetic Dispersive Solid Phase Extraction Using Recycled-graphite for GO-Fe3O4-dithizone Composite Combined with FAAS for Determination of Lead in Environmental Samples. ANAL. SCI. 37, 1015–1021 (2021). https://doi.org/10.2116/analsci.20P383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P383

Keywords

Navigation