Skip to main content
Log in

An Analysis of the Formation Mechanism of Geopolymer Made from Obsidian Mineral and Its Potential Application as a Slow Release Fertilizer

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Geopolymer is the inorganic polymer commonly made from kaolin, clay, fly ash, or slag. Obsidian mineral is the new candidate material for geopolymer formation. Obsidian is a material that used in ancient eras, but nowadays, this function has been replaced by various metals. Obsidian consists of cristobalite and sodium aluminum silicate. Obsidian was reacted with disodium metasilicate (Na2SiO3) to form a mineral-based geopolymer. An analysis of the formation mechanism through X-ray diffraction and Fourier transform infrared spectroscopy showed that the geopolymer formation from obsidian takes place in two stages. The first stage is the formation of a geopolymer from a reaction among cristobalite, disodium metasilicate, and amorphous aluminum silicates, whereas the second stage is the incorporation of crystalline sodium aluminum silicate into the former geopolymer structure. Geopolymer is usually utilized to form brick or concrete for an infrastructure purpose, but in this research, the geopolymer is proposed to control the release rate of elements from fertilizer. The result of potassium release test shows that the geopolymer has a slow-release property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Davidovits, "Geopolymer Chemistry and Application, Institute of Geopolymer", 2nd ed., 2011, Institute of Geopolymer, France.

    Google Scholar 

  2. M.I. Abdul Aleem and P.D. Arumairaj, Int. J. Eng. Sci., 2012, 1, 118.

    Google Scholar 

  3. B.V. Rangan, Indian Concr. J., 2014, 88, 41.

    Google Scholar 

  4. F. Pelisser, B.V. Silva, M.H. Menger, B.J. Frasson, T.A. Keller, A.J. Torii, R.H. Lopez, Rev. Ibracon Estrut. Mater., 2018, 11, 535.

    Article  Google Scholar 

  5. M.B. Diop, L. Molez, A. Bouguerra, A.N. Diouf, M.W. Grutzeck, Arab J. Sci. Eng., 2014, 39, 4351.

    Article  CAS  Google Scholar 

  6. B. Kallesten, S. Kakay, K. Gebremariam, in 2nd Conference of Computational Methods in Offshore Technology and First Conference of Oil and Gas Technology, 2019, Stavanger, Norway.

  7. A.M.M. Al Bakri, H. Kamarudin, M. Bnhussain, I.K. Nizar, A.R. Rafiza, Y. Zarina, Rev. Adv. Mater. Sci., 2012, 30, 90.

    Google Scholar 

  8. M.B. Ali, R. Saidur, M.S. Hossain, Renew. Sust. Energ. Rev., 2011, 15, 2252.

    Article  CAS  Google Scholar 

  9. C. Chen, G. Habert, Y. Bouzidi, A. Jullien, J. Clean. Prod., 2010, 18, 478.

    Article  CAS  Google Scholar 

  10. A. Nmiri, N. Hamdi, O. Yazoghli-Marzouk, M. Duc, E. Srasra, J. Mater. Environ. Sci., 2017, 8, 676.

    CAS  Google Scholar 

  11. P. Hâjkovâ, Minerals, 2018, 8, 444.

    Article  Google Scholar 

  12. C.P. Gonzalez, A.M. Montano, A.K. Gonzalez, C.A. Rîos, in The International Congress of Mechanical Engineering and Agricultural Sciences-CIIMCA, 2011, Floridablanca, Santander, Colombia.

  13. N. Hamdi, I.B. Messaoud, E. Srasra, C.R. Chim., 2019, 22, 220.

    Article  CAS  Google Scholar 

  14. A.Z.W. Wazien, M.M.A. Abdullah, R.A. Razak, M.R. Rozainy, M.F.M Tahir, in International Conference on Innovative Research—ICIR Euroinvent, 2016, Iasi, Romania.

  15. S. Samantasinghar and S.P. Singh, Int. J. Concr. Struct. Mater., 2019, 13, 1.

    Article  Google Scholar 

  16. X. Huang, L. Yu, D.W. Li, Y.C. Shiau, S. Li, K.X. Liu, Mater. Res. Innovations, 2015, 19, 413.

    Article  Google Scholar 

  17. J.E. Ericson, A. Makishima, J.D. Mackenzie, R. Berger, J.-Non Cryst. Solids, 1975, 17, 129.

    Article  CAS  Google Scholar 

  18. M.R. Fauzi, Kalpataru, 2017, 26, 14.

    Article  Google Scholar 

  19. M.R. Fauzi, F.S. Intan, A.S. Wibowo, J. Archaeol. Sci. Rep, 2019, 24, 166.

    Google Scholar 

  20. M. Spriggs, C. Reepmeyer, P.L. Anggraeni, W.P. Ronquillo, T. Simanjuntak, G. Summerhayes, D. Tanudirjo, A. Tiauzon, J. Archaeol. Sci., 2011, 38, 2873.

    Article  Google Scholar 

  21. Y.V. Kuzmin, Quat. Int., 2017, 442, 5.

    Article  Google Scholar 

  22. R.E. Hughes, D.H. Wera, Z. Sulgostowska, Quat. Int., 2018, 468(A), 84.

    Article  Google Scholar 

  23. D.I. Godfrey-Smith and N. Haywood, Ontario Archaeol., 1984, 41, 29.

    Google Scholar 

  24. M.V. Fernandez, C.R. Stern, P. Leal, Quat. Int., 2015, 375, 44.

    Article  Google Scholar 

  25. R. Campbella, C.R. Stern, A. Penalozac, J. Archaeol. Sci. Rep., 2017, 13, 617.

    Google Scholar 

  26. D. Qiao, H. Liu, L. Yu, X. Bao, G.P. Simon, E. Petinakis, L. Chen, Carbohydr. Polym., 2016, 147, 146.

    Article  CAS  PubMed  Google Scholar 

  27. J.F. Mukerabigwi, Q. Wang, X. Ma, M. Liu, S. Lei, H. Wei, X. Huang, Y. Cao, J. Coat. Technol. Res., 2015, 12, 1085.

    Article  CAS  Google Scholar 

  28. Solihin, Metalurgi, 2013, 28, 1.

    Google Scholar 

  29. Q. Zhang, W. Tongamp, F. Saito, Powder Technol., 2011, 212, 354.

    Article  Google Scholar 

  30. W. Yuan, Solihin, Q. Zhang, J. Kano, F. Saito, Powder Technol., 2014, 260, 22.

    Article  Google Scholar 

  31. M.N. Khan, M. Mobin, Z.K. Abbas, S.A. Alamri, Encycl. Anthropocene, 2018, 5, 225.

    Article  Google Scholar 

  32. J.H. Im and C.O. Choo, Econ. Environ. Geol., 2017, 50, 105.

    Article  Google Scholar 

  33. M.C.G. Castorena, "Pedogenic Siliceous Features, Interpretation of Micromorphological Features of Soils and Regoliths", ed. G. Stoops, V. Marcelino, F. Mees, 2nd ed., 2018, Chap. 6, Elsevier B.V., Amsterdam.

    Google Scholar 

Download references

Acknowledgments

The research was funded by The National Priority Research Program, which was coordinated by the National Development

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solihin Solihin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solihin, S., Rizqiadi, A. & Handayani, I. An Analysis of the Formation Mechanism of Geopolymer Made from Obsidian Mineral and Its Potential Application as a Slow Release Fertilizer. ANAL. SCI. 36, 1401–1405 (2020). https://doi.org/10.2116/analsci.20P182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P182

Keywords

Navigation