Skip to main content
Log in

Degradation Behavior and Immunological Detection of Silk Fibroin Exposure to Enzymes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) through exposure to alkaline proteinase, α-chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β-sheet and the reduction of α-helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi, respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α-chymotrypsin possesses the most cleavage sites among these enzymes, the α-chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Li, F. Cai, X. Ye, J. Liang, J. Li, M. Wu, D. Zhao, Z. Jiang, Z. You, and B. Zhong, J. Proteome Res., 2017, 16, 2495.

    Article  CAS  PubMed  Google Scholar 

  2. J. Glausiusz, Nature, 2009, 462, 574.

    Article  CAS  Google Scholar 

  3. W. Patrick, S. Hans, and P. Angelika, J. Agric. Food Chem., 2009, 57, 8399.

    Article  CAS  PubMed  Google Scholar 

  4. H. Mai, Y. Yang, I. Abuduresule, W. Li, X. Hu, and C. Wang, Sci. Rep., 2016, 6, 18939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. E. Karpova, V. Vasiliev, V. Mamatyuk, N. Polosmak, and L. Kundo, J. Archaeol. Sci., 2016, 70, 15.

    Article  CAS  Google Scholar 

  6. M. A. Koperska, D. Pawcenis, J. Bagniuk, M. M. Zaitz, M. Missori, T. Łojewski, and J. Łojewska, Polym. Degrad. Stabil., 2014, 105, 185.

    Article  CAS  Google Scholar 

  7. M. E.-S. Osman, A. A. E.-N. El-Shaphy, D. A. Meligy, and M. M. Ayid, Int. J. Conserv. Sci., 2014, 5, 295.

    Google Scholar 

  8. K. Sterflinger and F. Pinzari, Environ. Microbiol., 2012, 14, 559.

    Article  CAS  PubMed  Google Scholar 

  9. Q. Lu, B. Zhang, M. Li, B. Zuo, D. L. Kaplan, Y. Huang, and H. Zhu, Biomacromolecules, 2011, 12, 1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. R. You, Y. Xu, Y. Liu, X. Li, and M. Li, Biomed. Mater., 2014, 10, 015003.

    Article  PubMed  Google Scholar 

  11. T. Wongpinyochit, B. F. Johnston, and F. P. Seib, ACS Biomater. Sci. Eng., 2018, 4, 942.

    Article  CAS  PubMed  Google Scholar 

  12. K. Numata, P. Cebe, and D. L. Kaplan, Biomaterials, 2010, 31, 2926.

    Article  CAS  PubMed  Google Scholar 

  13. E. S. Sashina, A. M. Bochek, N. P. Novoselov, and D. A. Kirichenko, Russ. J. Appl. Chem., 2006, 79, 869.

    Article  CAS  Google Scholar 

  14. Q. You, M. Liu, Y. Liu, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, ACS Sens., 2017, 2, 569.

    Article  CAS  PubMed  Google Scholar 

  15. T. Tsumuraya, T. Sato, M. Hirama, and I. Fujii, Anal. Chem., 2018, 90, 7318.

    Article  CAS  PubMed  Google Scholar 

  16. J. Gu, C. Xu, M. Li, B. Chen, Y. Shang, H. Zheng, Y. Zhou, Z. Hu, Z. Peng, and B. Wang, Anal. Sci., 2019, 35, 175.

    Article  CAS  PubMed  Google Scholar 

  17. M. Timms, R. Steel, and J. Vine, Drug Test. Anal., 2016, 8, 164.

    Article  CAS  PubMed  Google Scholar 

  18. S. Ling, Z. Qi, D. P. Knight, Z. Shao, and X. Chen, Biomacromolecules, 2011, 12, 3344.

    Article  CAS  PubMed  Google Scholar 

  19. G. Fang, S. Sapru, S. Behera, J. Yao, Z. Shao, S. C. Kundu, and X. Chen, J. Mater. Chem. B, 2016, 4, 4337.

    Article  CAS  PubMed  Google Scholar 

  20. K. Tanaka, N. Kajiyama, K. Ishikura, S. Waga, A. Kikuchi, K. Ohtomo, T. Takagi, and S. Mizuno, Biochim. Biophys. Acta, 1999, 1432, 92.

    Article  CAS  PubMed  Google Scholar 

  21. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, J. Biol. Chem., 2000, 275, 40517.

    Article  CAS  PubMed  Google Scholar 

  22. Q. You, Q. Li, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, J. Agric. Food Chem., 2017, 65, 7805.

    Article  CAS  PubMed  Google Scholar 

  23. L. Hedstrom, Chem. Rev., 2003, 34, 4501.

    Google Scholar 

  24. I. Siddiqui and Q. Husain, Colloid. Surf. B, 2019, 173, 733.

    Article  CAS  Google Scholar 

  25. S. Ha, H. S. Gracz, A. E. Tonelli, and S. M. Hudson, Biomacromolecules, 2005, 6, 2563.

    Article  CAS  PubMed  Google Scholar 

  26. C. Guo, J. Zhang, J. S. Jordan, X. Wang, R. W. Henning, and J. L. Yarger, Biomacromolecules, 2018, 19, 906.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Wang, J. Wen, B. Peng, B. Hu, X. Chen, and Z. Shao, Biomacromolecules, 2018, 19, 1999.

    Article  CAS  PubMed  Google Scholar 

  28. D. J. Barlow, M. S. Edwards, and J. M. Thornton, Nature, 1986, 322, 747.

    Article  CAS  PubMed  Google Scholar 

  29. T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, J. Appl. Polym. Sci., 2004, 91, 2383.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the National Natural Science Foundation of China (51603188), the Public Technology Research Plan of Zhejiang Province, China (2016C33175), the Outstanding Young Research Program of Science and Technology for the Protection of Cultural Relics (2015-294), and the Special Funds from the Administration of Cultural Heritage of Zhejiang Province (2017014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhou or Bing Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Zhou, L., Yang, H. et al. Degradation Behavior and Immunological Detection of Silk Fibroin Exposure to Enzymes. ANAL. SCI. 35, 1243–1249 (2019). https://doi.org/10.2116/analsci.19P222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P222

Keywords

Navigation