Skip to main content
Log in

Polyadenine-mediated Immobilization of Aptamers on a Gold Substrate for the Direct Detection of Bacterial Pathogens

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Nucleic acid aptamers have been widely used as synthetic probes for bioanalytical applications. Herein, we carried out a detailed study on the immobilization of a series of aptamers ranging from 37 to 88 bases, which are specific to either Escherichia coli (E. coli) or Staphylococcus aureus (S. aureus), on a planar gold substrate via a polyadenine-mediated immobilization method. The resultant surfaces were characterized by both surface plasmon resonance spectroscopy (SPR) and X-ray photoelectron spectroscopy. The results clearly show that the aptamer solution at a lower ionic strength gives rise to a higher lateral density of the aptamer when compared to that at a higher ionic strength. The SPR aptasensors are then employed for detecting their corresponding bacteria (i.e., E. coli and S. aureus, respectively). The data indicate that the SPR aptasensor with a higher density of aptamer exhibits a better capture of target bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Kim, N. H. A. Raston, and M. B. Gu, Biosens. Bioelectron., 2016, 76, 2.

    Article  PubMed  Google Scholar 

  2. L. I. Hernandez, I. Machado, T. Schafer, and F. J. Hernandez, Curr Top. Med. Chem., 2015, 15, 1066.

    Article  CAS  PubMed  Google Scholar 

  3. W. Tan, M. J. Donovan, and J. Jiang, Chem. Rev., 2013, 113, 2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. T. Hermann and D. J. Patel, Science, 2000, 287, 820.

    Article  CAS  PubMed  Google Scholar 

  5. D. J. Patel, A. K. Suri, F. Jiang, L. Jiang, P. Fan, R. A. Kumar, and S. Nonin, J. Mol. Biol., 1997, 272, 645.

    Article  CAS  PubMed  Google Scholar 

  6. A. D. Ellington and J. W. Szostak, Nature, 1990, 346, 818.

    Article  CAS  PubMed  Google Scholar 

  7. D. L. Robertson and G. F. Joyce, Nature, 1990, 344, 467.

    Article  CAS  PubMed  Google Scholar 

  8. C. Tuerk and L. Gold, Science, 1990, 249, 505.

    Article  CAS  PubMed  Google Scholar 

  9. K. S. Park, Biosens. Bioelectron., 2018, 102, 179.

    Article  CAS  PubMed  Google Scholar 

  10. M. X. You, Y. Chen, L. Peng, D. Han, B. C. Yin, B. C. Ye, and W. H. Tan, Chem. Sci., 2011, 2, 1003.

    Article  CAS  Google Scholar 

  11. S. Song, L. Wang, J. Li, C. Fan, and J. Zhao, TrAC, Trends Anal. Chem., 2008, 27, 108.

    Article  CAS  Google Scholar 

  12. H. O. Ham, Z. Liu, K. H. A. Lau, H. Lee, and P. B. Messersmith, Angew. Chem., Int. Ed., 2011, 50, 732.

    Article  CAS  Google Scholar 

  13. A. Sassolas, L. J. Blum, and B. D. Leca-Bouvier, Biosens. Bioelectron., 2011, 26, 3725.

    Article  CAS  PubMed  Google Scholar 

  14. L.-Q. Chu, W. Knoll, and R. Forch, Biosens. Bioelectron., 2009, 25, 519.

    Article  CAS  PubMed  Google Scholar 

  15. P. Gong, C.-Y. Lee, L. J. Gamble, D. G. Castner, and D. W. Grainger, Anal. Chem., 2006, 78, 3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. M. Schreiner, D. F. Shudy, A. L. Hatch, A. Opdahl, L. J. Whitman, and D. Y. Petrovykh, Anal. Chem., 2010, 82, 2803.

    Article  CAS  PubMed  Google Scholar 

  17. H. Pei, F. Li, Y. Wan, M. Wei, H. Liu, Y. Su, N. Chen, Q. Huang, and C. Fan, J. Am. Chem. Soc., 2012, 134, 11876.

    Article  CAS  PubMed  Google Scholar 

  18. L. J. A. Macedo, E. N. Miller, and A. Opdahl, Anal. Chem., 2017, 89, 1757.

    Article  CAS  PubMed  Google Scholar 

  19. Q. Zhang, X.-N. Zou, and L.-Q. Chu, Plasmonics, 2018, 13, 903.

    Article  CAS  Google Scholar 

  20. K. Wang, M.-Q. He, F.-H. Zhai, R.-H. He, and Y.-L. Yu, Talanta, 2017, 166, 87.

    Article  CAS  PubMed  Google Scholar 

  21. J. Guo, Y. Chen, Y. Jiang, and H. Ju, Chem.—Eur J., 2017, 23, 9332.

    Article  CAS  PubMed  Google Scholar 

  22. J. Kundu, O. Neumann, B. G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. E. Scuseria, and N. J. Halas, J. Phys. Chem. C, 2009, 113, 14390.

    Article  CAS  Google Scholar 

  23. Z. Huang, B. Liu, and J. Liu, Langmuir, 2016, 32, 11986.

    Article  CAS  PubMed  Google Scholar 

  24. H. Jiang, K. Ling, X. Tao, and Q. Zhang, Biosens. Bioelectron., 2015, 70, 299.

    Article  CAS  PubMed  Google Scholar 

  25. A. Opdahl, D. Y. Petrovykh, H. Kimura-Suda, M. J. Tarlov, and L. J. Whitman, PNAS, 2007, 104, 9.

    Article  PubMed  Google Scholar 

  26. T. T. Fan, Y. Du, Y. Yao, J. Wu, S. Meng, J. J. Luo, X. Zhang, D. Z. Yang, C. Y. Wang, Y. Qian, and F. L. Gao, Sens. Actuators, B, 2018, 266, 9.

    Article  CAS  Google Scholar 

  27. M. Majdinasab, A. Hayat, and J. L. Marty, TrAC, Trends Anal. Chem., 2018, 107, 60.

    Article  CAS  Google Scholar 

  28. V. Templier, A. Roux, Y. Roupioz, and T. Livache, TrAC, Trends Anal. Chem., 2016, 79, 71.

    Article  CAS  Google Scholar 

  29. S. S. Hinman, K. S. McKeating, and Q. Cheng, Anal. Chem., 2018, 90, 19.

    Article  CAS  PubMed  Google Scholar 

  30. A. Olaru, C. Bala, N. Jaffrezic-Renault, and H. Y. Aboul- Enein, Crit. Rev. Anal. Chem., 2015, 45, 97.

    Article  CAS  PubMed  Google Scholar 

  31. E. Zeidan, C. L. Kepley, C. Sayes, and M. G. Sandros, Nanomedicine, 2015, 10, 1833.

    Article  CAS  PubMed  Google Scholar 

  32. S. Brosel-Oliu, R. Ferreira, N. Uria, N. Abramova, R. Gargallo, F. X. Munoz-Pascual, and A. Bratov, Sens. Actuators, B, 2018, 255, 2988.

    Article  CAS  Google Scholar 

  33. C. Y. Zhang, C. W. Wang, R. Xiao, L. Tang, J. Huang, D. Wu, S. W. Liu, Y. Wang, D. Zhang, S. Q. Wang, and X. M. Chen, J. Mater. Chem. B, 2018, 6, 3751.

    Article  CAS  PubMed  Google Scholar 

  34. S. M. Yoo, D.-K. Kim, and S. Y. Lee, Talanta, 2015, 132, 112.

    Article  CAS  PubMed  Google Scholar 

  35. W. Wu, J. Zhang, M. Zheng, Y. Zhong, J. Yang, Y. Zhao, W. Wu, W. Ye, J. Wen, Q. Wang, and J. Lu, PLoS ONE, 2012, 7, e48999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. W.-H. Wu, M. Li, Y. Wang, H.-X. Ouyang, L. Wang, C.-X. Li, Y.-C. Cao, Q.-H. Meng, and J.-X. Lu, Nanoscale Res. Lett., 2012, 7, 658.

    Article  PubMed  PubMed Central  Google Scholar 

  37. A. Abbaspour, F. Norouz-Sarvestani, A. Noon, and N. Soltani, Biosens. Bioelectron., 2015, 68, 149.

    Article  CAS  PubMed  Google Scholar 

  38. Y. Lian, F. He, H. Wang, and F. Tong, Biosens. Bioelectron., 2015, 65, 314.

    Article  CAS  PubMed  Google Scholar 

  39. H. Zhang, X. Ma, Y. Liu, N. Duan, S. Wu, Z. Wang, and B. Xu, Biosens. Bioelectron., 2015, 74, 872.

    Article  CAS  PubMed  Google Scholar 

  40. F. Wahid, J.-J. Yin, D.-D. Xue, H. Xue, Y.-S. Lu, C. Zhong, and L.-Q. Chu, Int. J. Biol. Macromol., 2016, 88, 273.

    Article  CAS  PubMed  Google Scholar 

  41. W. Knoll, Annu. Rev. Phys. Chem., 1998, 49, 569.

    Article  CAS  PubMed  Google Scholar 

  42. L.-Q. Chu, Q. Zhang, and R. Foerch, Plasma Process. Polym., 2015, 12, 941.

    Article  CAS  Google Scholar 

  43. X. Xu, X. Ma, H. Wang, and Z. Wang, Microchim. Acta, 2018, 185, 325.

    Article  Google Scholar 

  44. N. Jo, B. Kim, S.-M. Lee, J. Oh, I. H. Park, K. J. Lim, J.-S. Shin, and K.-H. Yoo, Biosens. Bioelectron., 2018, 102, 164.

    Article  CAS  PubMed  Google Scholar 

  45. M. R. Hasan, T. Pulingam, J. N. Appaturi, A. N. Zifruddin, S. J. Teh, T. W. Lim, F. Ibrahim, B. F. Leo, and K. L. Thong, Anal. Biochem., 2018, 554, 34.

    Article  CAS  PubMed  Google Scholar 

  46. S. Shrivastava, W.-I. Lee, and N.-E. Lee, Biosens. Bioelectron., 2018, 109, 90.

    Article  CAS  PubMed  Google Scholar 

  47. M. D. N. Ngavouka, A. Bosco, L. Casalis, and P. Parisse, Macromolecules, 2014, 47, 8748.

    Article  Google Scholar 

  48. B. W. Liu, P. Wu, Z. C. Huang, L. Z. Ma, and J. W. Liu, J. Am. Chem. Soc., 2018, 140, 4499.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qiang Chu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WW., Han, X. & Chu, LQ. Polyadenine-mediated Immobilization of Aptamers on a Gold Substrate for the Direct Detection of Bacterial Pathogens. ANAL. SCI. 35, 967–972 (2019). https://doi.org/10.2116/analsci.19P110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P110

Keywords

Navigation