Skip to main content
Log in

Double-Viewing-Position Single-Particle Inductively Coupled Plasma-Atomic Emission Spectrometry for the Selection of ICP Sampling Position in SP-ICP Measurements

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Double-viewing-position single-particle inductively coupled plasma-atomic emission spectrometry (DVP-SP-ICP-AES) measures emission intensity at two ICP vertical positions simultaneously using a single photomultiplier tube. A particle travelling up the ICP gives two consecutive temporal emission peaks. The Yb II 328.937-nm emission intensity of the two peaks for single Yb2O3 particles of diameter of 200–2000 nm are plotted against each other in a correlation plot. The correlation is poor when the gas temperature at the lower observation position is approximately the boiling point of the particles. Poor particle vaporization at the center of the central channel occurs because the gas temperature is 400 K lower than the temperature at the rim. The correlation is improved by shifting the observation positions up or using helium-argon mixed carrier gas to increase the gas temperature. Gas temperature is an important parameter for precise single particle-ICP measurements. DVP-SP-ICP-AES can be used to identify poor particle vaporization without the need of temperature measurement. Keywords ICP-AES, single-particle measurement, viewing position, sampling depth, boiling point, gas temperature

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Groh, C. C. Garcia, A. Murtazin, V. Horvatič, and K. Niemax, Spectrochim. Acta, Part B, 2009, 64, 247.

    Article  Google Scholar 

  2. A. Murtazin, S. Groh, and K. Niemax, Spectrochim. Acta, Part B, 2012, 67, 3.

    Article  CAS  Google Scholar 

  3. T. Nomizu, S. Kaneco, T. Tanaka, D. Ito, H. Kawaguchi, and B. T. Vallee, Anal. Chem., 1994, 66, 3000.

    Article  CAS  Google Scholar 

  4. C. C. Garcia, A. Murtazin, S. Groh, V. Horvatic, and K. Niemax, J. Anal. At. Spectrom., 2010, 25, 645.

    Article  CAS  Google Scholar 

  5. A. Murtazin, S. Groh, and K. Niemax, J. Anal. At. Spectrom., 2010, 25, 1395.

    Article  CAS  Google Scholar 

  6. K.-S. Ho and W.-T. Chan, J. Anal. At. Spectrom., 2010, 25, 1114.

    Article  CAS  Google Scholar 

  7. W.-Y. Lau, K.-H. Chun, and W.-T. Chan, J. Anal. At. Spectrom., 2017, 32, 807.

    Article  CAS  Google Scholar 

  8. T. Nomizu, H. Hayashi, N. Hoshino, T. Tanaka, H. Kawaguchi, K. Kitagawa, and S. Kaneco, J. Anal. At. Spectrom., 2002, 17, 592.

    Article  CAS  Google Scholar 

  9. C.-N. Tsang, K.-S. Ho, H. Sun, and W.-T. Chan, J. Am. Chem. Soc., 2011, 133, 7355.

    Article  CAS  PubMed  Google Scholar 

  10. J. W. Olesik and P. J. Gray, J. Anal. At. Spectrom., 2012, 27, 1143.

    Article  CAS  Google Scholar 

  11. H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, E. P. Gray, C. P. Higgins, and J. F. Ranville, Environ. Sci. Technol., 2012, 46, 12272.

    Article  CAS  PubMed  Google Scholar 

  12. J. Tuoriniemi, G. Cornelis, and M. Hassellöv, Anal. Chem., 2012, 84, 3965.

    Article  CAS  PubMed  Google Scholar 

  13. K.-S. Ho, K.-O. Lui, K.-H. Lee, and W.-T. Chan, Spectrochim. Acta, Part B, 2013, 89, 30.

    Article  CAS  Google Scholar 

  14. L.-N. Zheng, M. Wang, B. Wang, H.-Q. Chen, H. Ouyang, Y.-L. Zhao, Z.-F. Chai, and W.-Y. Feng, Talanta, 2013, 116, 782.

    Article  CAS  PubMed  Google Scholar 

  15. A. Hineman and C. Stephan, J. Anal. At. Spectrom., 2014, 29, 1252.

    Article  CAS  Google Scholar 

  16. F. Laborda, E. Bolea, and J. Jiménez-Lamana, Anal. Chem., 2014, 86, 2270.

    Article  CAS  PubMed  Google Scholar 

  17. J. Liu, K. E. Murphy, R. I. MacCuspie, and M. R. Winchester, Anal. Chem., 2014, 86, 3405.

    Article  CAS  PubMed  Google Scholar 

  18. S. Miyashita, A. S. Groombridge, S. Fujii, A. Minoda, A. Takatsu, A. Hioki, K. Chiba, and K. Inagaki, J Anal. At. Spectrom., 2014, 29, 1598.

    Article  CAS  Google Scholar 

  19. W.-Y. Lau, K.-H. Chun, and W.-T. Chan, J. Anal. At. Spectrom., 2017, 32, 807.

    Article  CAS  Google Scholar 

  20. M. H. P. Yau and W.-T. Chan, J. Anal. At. Spectrom., 2005, 20, 1197.

    Article  CAS  Google Scholar 

  21. C. Degueldre and P.-Y. Favarger, Colloids Surf. Physicochem. Eng. Asp., 2003, 217, 137.

    Article  CAS  Google Scholar 

  22. C. Degueldre, Talanta, 2004, 62, 1051.

    Article  CAS  PubMed  Google Scholar 

  23. C. Degueldre, P.-Y. Favarger, and C. Bitea, Anal. Chim. Acta, 2004, 518, 137.

    Article  CAS  Google Scholar 

  24. C. Degueldre, P.-Y. Favarger, R. Rossé, and S. Wold, Talanta, 2006, 68, 623.

    Article  CAS  PubMed  Google Scholar 

  25. C. Degueldre, P.-Y. Favarger, and S. Wold, Anal. Chim. Acta, 2006, 555, 263.

    Article  CAS  Google Scholar 

  26. F. Laborda, J. Jiménez-Lamana, E. Bolea, and J. R. Castillo, J. Anal. At. Spectrom., 2013, 28, 1220.

    Article  CAS  Google Scholar 

  27. S. Gschwind, L. Flamigni, J. Koch, O. Borovinskaya, S. Groh, K. Niemax, and D. Günther, J. Anal. At. Spectrom., 2011, 26, 1166.

    Article  CAS  Google Scholar 

  28. F. Laborda, J. Jiménez-Lamana, E. Bolea, and J. R. Castillo, J. Anal. At. Spectrom., 2011, 26, 1362.

    Article  CAS  Google Scholar 

  29. B. Franze, I. Strenge, and C. Engelhard, J. Anal. At. Spectrom., 2012, 27, 1074.

    Article  CAS  Google Scholar 

  30. R. Peters, Z. Herrera-Rivera, A. Undas, M. van der Lee, H. Marvin, H. Bouwmeester, and S. Weigel, J. Anal. At. Spectrom., 2015, 30, 1274.

    Article  CAS  Google Scholar 

  31. S. Lee, X. Bi, R. B. Reed, J. F. Ranville, P. Herckes, and P. Westerhoff, Environ. Sci. Technol., 2014, 48, 10291.

    Article  CAS  PubMed  Google Scholar 

  32. K.-S. Ho, W.-W. Lee, and W.-T. Chan, J. Anal. At. Spectrom., 2015, 30, 2066.

    Article  CAS  Google Scholar 

  33. W.-W. Lee and W.-T. Chan, J. Anal. At. Spectrom., 2015, 30, 1245.

    Article  CAS  Google Scholar 

  34. M. Huang, S. A. Lehn, E. J. Andrews, and G. M. Hieftje, Spectrochim. Acta, Part B, 1997, 52, 1173.

    Article  Google Scholar 

  35. P. Yang, J. A. Horner, N. N. Sesi, and G. M. Hieftje, Spectrochim. Acta, Part B, 2000, 55, 1833.

    Article  Google Scholar 

  36. M. Huang, D. S. Hanselman, P. Yang, and G. M. Hieftje, Spectrochim. Acta, Part B, 1992, 47, 765.

    Article  Google Scholar 

  37. K.-S. Ho, K.-O. Lui, K.-H. Lee, and W.-T. Chan, Spectrochim. Acta, Part B, 2013, 89, 30.

    Article  CAS  Google Scholar 

  38. M. W. Blades and G. Horlick, Appl. Spectrosc., 1980, 34, 696.

    Article  CAS  Google Scholar 

  39. M. W. Blades and G. Horlick, Spectrochim. Acta, Part B, 1981, 36, 861.

    Article  Google Scholar 

  40. J. W. Olesik, J. A. Kinzer, and G. J. McGowan, Appl. Spectrosc., 1997, 51, 607.

    Article  CAS  Google Scholar 

  41. H. Zhang, MPhil Thesis, “Characterization of Signal-Production Processes of Single Particles in ICP by Time-resolved ICP-AES”, The University of Hong Kong, 2011.

    Book  Google Scholar 

  42. J. M. Mermet, Anal. Chim. Acta, 1991, 250, 85.

    Article  CAS  Google Scholar 

  43. A. Montaser and D. W. Golightly, “Inductively Coupled Plasmas in Analytical Atomic Spectrometry”, 1992, VCH Publishers.

    Google Scholar 

  44. H.-A. Kim, B.-T. Lee, S.-Y. Na, K.-W. Kim, J. F. Ranville, S.-O. Kim, E. Jo, and I.-C. Eom, Chemosphere, 2017, 171, 468.

    Article  CAS  PubMed  Google Scholar 

  45. I. Novotny, J. C. Farinas, W. Jia-liang, E. Poussel, and J.-M. Mermet, Spectrochim. Acta, Part B, 1996, 51, 1517.

    Article  Google Scholar 

  46. S. Groh, C. C. Garcia, A. Murtazin, V. Horvatic, and K. Niemax, Spectrochim. Acta, Part B, 2009, 64, 247.

    Article  Google Scholar 

  47. G. C.-Y. Chan and G. M. Hieftje, Spectrochim. Acta, Part B, 2016, 121, 55.

    Article  CAS  Google Scholar 

  48. G. C. Y. Chan, Z. Zhu, and G. M. Hieftje, Spectrochim. Acta, Part B, 2012, 76, 87.

    Article  CAS  Google Scholar 

  49. G. C. Y. Chan, Z. Zhu, and G. M. Hieftje, Spectrochim. Acta, Part B, 2012, 76, 77.

    Article  CAS  Google Scholar 

  50. J. W. Olesik and S. E. Hobbs, Anal. Chem, 1994, 66, 3371.

    Article  CAS  Google Scholar 

  51. J. W. Olesik, Appl. Spectrosc., 1997, 51, 158A.

    Article  CAS  Google Scholar 

  52. Newport Corporation, 77348 Photomultiplier Tube, https://www.newport.com/p/77348.

  53. “CRC Handbook of Chemistry and Physics: a Readyreference Book of Chemical and Physical Data”, ed. D. R. Lide, 1998, 79th ed., CRC, Boca Raton.

    Google Scholar 

  54. J. A. Horner, G. C.-Y. Chan, S. A. Lehn, and G. M. Hieftje, Spectrochim. Acta, Part B, 2008, 63, 217.

    Article  Google Scholar 

  55. N. Furuta, Spectrochim. Acta, Part B, 1985, 40, 1013.

    Article  Google Scholar 

  56. A. Bogaerts and M. Aghaei, J. Anal. Spectrom., 2017, 32, 233.

    Article  CAS  Google Scholar 

  57. N. N. Sesi, A. Mackenzie, K. E. Shanks, P. Yang, and G. M. Hieftje, Spectrochim. Acta, Part B, 1994, 49, 1259.

    Article  Google Scholar 

  58. C. Chan, MPhil Thesis, “Investigation of Matrix Effects on Excitation Conditions of Dry Inductively Coupled Plasma Using Laser Ablation”, The University of Hong Kong, 2000.

    Book  Google Scholar 

  59. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, “Molecular Theory of Gases and Liquids”, 1954, John Wiley and Sons Inc., New York.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No. 17333316) and the Seed Funding Programme for Basic Research of The University of Hong Kong. We would like to thank Prof. Gary Horlick for his generous donation of the Plasma Therm RF 2500D generator and matching network. The initial work of the current study was based on the instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Tat Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, KH., Zhang, H. & Chan, WT. Double-Viewing-Position Single-Particle Inductively Coupled Plasma-Atomic Emission Spectrometry for the Selection of ICP Sampling Position in SP-ICP Measurements. ANAL. SCI. 34, 711–717 (2018). https://doi.org/10.2116/analsci.18SBP11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18SBP11

Navigation