Skip to main content
Log in

An Ultrasensitive Colorimetric Strategy for Detection of Cadmium Based on the Peroxidase-like Activity of G-Quadruplex-Cd(II) Specific Aptamer

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We rationally designed an ultrasensitive and label-free sensing platform for determination of cadmium (Cd). The sensing platform contains G-quadruplex-Cd(II) specific aptamer (GCDSA) constructed by incorporating G-rich sequence at the end of 5' and the critical domain of the Cd-4 aptamer. GCDSA designed act as both a special recognition sequence for Cd2+ and a signal DNAzyme. In absence of Cd2+, GCDSA may mainly exist in a random coil sequence. Upon addition of Cd2+, GCDSA could probably be induced to fold into a G-quadruplex structure. The generation of plentiful active G-quadruplex interacts with hemin to form a peroxidase-like DNAzyme, leading to increased absorbance signal of the sensing system. A4 was directly proportional to the two segments of concentrations for Cd2+, with the detection of limit of 0.15 nM. The proposed method avoids the labeled oligonucleotides and allows directly quantitative analysis of the samples by cheap instruments, with an excellent dynamic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merchant Research & Consulting Ltd, “Cadimum: Global Market Trends and Prospects to 2027”, 2014, Market Publishers Ltd., London

    Google Scholar 

  2. W. Tang, W. Zhang, Y. Zhao, H. Zhang, and B. Shan, Ecol. Indic., 2017, 81, 295.

    Article  CAS  Google Scholar 

  3. X. M. Zhao, L. A. Yao, Q. L. Ma, G. J. Zhou, L. Wang, Q. L. Fang, and Z. C. Xu, Chemosphere, 2018, 194, 107.

    Article  CAS  PubMed  Google Scholar 

  4. W. Ji, Z. Chen, D. Li, and W. Ni, Energy Procedia, 2012, 16, 27.

    Article  CAS  Google Scholar 

  5. J. Yan, G. Quan, and C. Ding, Procedia Environ. Sci., 2013, 18, 78.

    Article  CAS  Google Scholar 

  6. L. Shi, H. Cao, J. Luo, P. Liu, T. Wang, G. Hu, and C. Zhang, Ecotoxicol. Environ. Saf., 2017, 145, 24.

    Article  CAS  PubMed  Google Scholar 

  7. L. Barregard, G. Bergström, and B. Fagerberg, Environ. Res., 2014, 135, 311.

    Article  CAS  PubMed  Google Scholar 

  8. M. Mikowska and R. S´wiergosz-Kowalewska, Chemosphere, 2018, 199, 625.

    Article  CAS  PubMed  Google Scholar 

  9. X. Zeng, X. Xu, H. M. Boezen, J. M. Vonk, W. Wu, and X. Huo, Environ. Pollut., 2017, 230, 838.

    Article  CAS  PubMed  Google Scholar 

  10. W. M. L. Shan, Y. B. Yi, Z. Y. Zhou, and F. Le, PLoS One, 2014, 9, 1.

    Google Scholar 

  11. X. A. Yang, M. B. Chi, Q. Q. Wang, and W. B. Zhang, Anal Chim. Acta, 2015, 869, 11.

    Article  CAS  PubMed  Google Scholar 

  12. H. Yu, X. Ai, K. Xu, C. Zheng, and X. Hou, Analyst, 2016, 141, 1512.

    Article  CAS  PubMed  Google Scholar 

  13. R. Sun, G. Ma, X. Duan, and J. Sun, Spectrochim. Acta, Part B, 2018, 141, 22.

    Article  CAS  Google Scholar 

  14. X. Yu, B. Chen, M. He, H. Wang, and B. Hu, Talanta, 2018, 179, 279.

    Article  CAS  PubMed  Google Scholar 

  15. R. S. Amais, A. Virgilio, D. Schiavo, and J. A. Nóbrega, Microchem. J., 2015, 120, 64.

    Article  CAS  Google Scholar 

  16. G. Peng, Y. Lu, Q. He, D. Mmereki, X. Tang, Z. Zhong, and X. Zhao, Water Sci. Technol., 2016, 73, 2781.

    Article  CAS  PubMed  Google Scholar 

  17. A. T. Duarte, M. B. Dessuy, M. G. R. Vale, B. Welz, and J. B. de Andrade, Talanta, 2013, 115, 55.

    Article  CAS  PubMed  Google Scholar 

  18. H. Tinas, N. Ozbek, and S. Akman, Microchem. J., 2018, 138, 316.

    Article  CAS  Google Scholar 

  19. V. Devesa and D. Vélez, in “Encyclopedia of Food and Health”, 2016, Academic Press, Oxford, DOI: https://doi.org/10.1016/B978-0-12-384947-2.00096-9, 543.

    Book  Google Scholar 

  20. J. Huang, X. Su, and Z. Li, Biosens. Bioelectron., 2017, 96, 127.

    Article  CAS  PubMed  Google Scholar 

  21. L. Mo, J. Li, Q. Liu, L. Qiu, and W. Tan, Biosens. Bioelectron., 2017, 89, 20.

    Article  Google Scholar 

  22. I. Palchetti and F. Bettazzi, in “Reference Module in Chemistry”, 2017, Molecular Sciences and Chemical Engineering, Elsevier, DOI: https://doi.org/10.1016/B978-0-12-409547-0.

    Google Scholar 

  23. L. Mo, J. Li, Q. Liu, L. Qiu, and W. Tan, Biosens. Bioelectron., 2017, 89, 201.

    Article  CAS  PubMed  Google Scholar 

  24. J. Huang, X. Su, and Z. Li, Biosens. Bioelectron., 2017, 96, 127.

    Article  CAS  PubMed  Google Scholar 

  25. Y. Wu, S. Zhan, L. Wang, and P. Zhou, Analyst, 2014, 139, 1550.

    Article  CAS  PubMed  Google Scholar 

  26. H. R. Lotfi Zadeh Zhad, Y. M. Rodríguez Torres, and R. Y. Lai, J. Electroanal. Chem., 2017, 803, 89.

    Article  CAS  Google Scholar 

  27. C. K. Kwok and C. J. Merrick, Trends Biotechnol, 2017, 35, 997.

    Article  CAS  PubMed  Google Scholar 

  28. T. Fujii, P. Podbevšek, J. Plavec, and N. Sugimoto, J. Inorg Biochem., 2017, 166, 190.

    Article  CAS  PubMed  Google Scholar 

  29. D. L. Ma, H. Z. He, K. H. Leung, H. J. Zhong, D. S. Chan, and C. H. Leung, Chem. Soc. Rev., 2013, 42, 3427.

    Article  CAS  PubMed  Google Scholar 

  30. J. Kosman, A. Stanislawska, A. Gluszynska, and B. Juskowiak, Int. J. Biol. Macromol., 2017, 101, 799.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Wang, Y. Wu, W. Liu, L. Chu, Z. Liao, W. Guo, G.-Q. Liu, X. He, and K. Wang, Talanta, 2018, 178, 491.

    Article  CAS  PubMed  Google Scholar 

  32. H. Sun, L. Yu, H. Chen, J. Xiang, X. Zhang, Y. Shi, Q. Yang, A. Guan, Q. Li, and Y. Tang, Talanta, 2015, 136, 210.

    Article  CAS  PubMed  Google Scholar 

  33. J. Ge, X. P. Li, J. H. Jiang, and R. Q. Yu, Talanta, 2014, 122, 85.

    Article  CAS  PubMed  Google Scholar 

  34. M. Liu, Z. Wang, L. Pan, Y. Cui, and Y. Liu, Biosens. Bioelectron., 2015, 69, 142.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Y. Yan, J. Lin, T. M. Ou, J. H. Tan, D. Li, L. Q. Gu, and Z. S. Huang, Biochem. Biophys. Res. Commum., 2010, 402, 614.

    Article  CAS  Google Scholar 

  36. A. C. Fyfe, P. W. Dunten, M. M. Martick, and W. G. Scott, J. Mol. Biol., 2015, 427, 2205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. I. M. Pedroso, L. F. Duarte, G. Yanez, A. M. Baker, and T. M. Fletcher, Biochem Biophys. Res, Commun., 2007, 358, 298.

    Article  CAS  PubMed  Google Scholar 

  38. X. Tang, Y. S. Wang, J. H. Xue, B. Zhou, J. X. Cao, S. H. Chen, M. H. Li, X. F. Wang, Y. F. Zhu, and Y. Q. Huang, J. Pharm. Biomed. Anal., 2015, 107, 258.

    Article  CAS  PubMed  Google Scholar 

  39. Y. Ding, S. Wang, J. Li, and L. Chen, TrAC, Trends Anal. Chem., 2016, 82, 175.

    Article  CAS  Google Scholar 

  40. Z. Zhang, H. Wang, Z. Chen, X. Wang, J. Choo, and L. Chen, Biosens. Bioelectron., 2018, 114, 52.

    Article  CAS  PubMed  Google Scholar 

  41. L. Chen and J. Li, ACS Appl. Mater. Interfaces, 2014, 6, 15897.

    Article  CAS  PubMed  Google Scholar 

  42. L. Chen, X. Fu, W. Lu, and L. Chen, ACS Appl. Mater. Interfaces, 2013, 5, 284.

    Article  CAS  PubMed  Google Scholar 

  43. T. Lou, Z. Chen, Y. Wang, and L. Chen, ACS Appl. Mater. Interfaces, 2011, 3, 1568.

    Article  CAS  PubMed  Google Scholar 

  44. Y. F. Zhu, Y. S. Wang, B. Zhou, J. H. Yu, L. L. Peng, Y. Q. Huang, X. J. Li, S. H. Chen, X. Tang and X. F. Wang, Anal. Bioanal. Chem., 2017, 409, 4951.

    Article  CAS  PubMed  Google Scholar 

  45. K. K. Chun and J. M. Catherine, Trends Biotechnol., 2017, 35, 997.

    Article  Google Scholar 

  46. K. Nucleic, A. Lawrence, and S. B. Paramjeet, Nucleic Acids Res., 2006, 34, W676.

    Article  Google Scholar 

  47. M. I. Zarudnaya, I. M. Kolomiets, A. L. Potyahaylo, and D. M. Hovorun, Nucleic Acids Res., 2003, 31, 1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. B. I. Kankia, G. Barany, and K. Musier-Forsyth, Nucleic Acids Res., 2005, 33, 4395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. H. Sun, X. Li, Y. Li, L. Fan, and H. B. Kraatz, Analyst, 2013, 138, 856.

    Article  CAS  PubMed  Google Scholar 

  50. X. H. Zhou, D. M. Kong, and H. X. Shen, Anal. Chim. Acta, 2010, 678, 124.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is subsidized by the National Natural Science Foundation of China (No. 81502850), the Natural Science Foundation of Hunan Province in China (No. 2015JJ2122) and Undergraduate inquiry learning and innovative experimental project in Hunan province (No. 336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Chen, YT., Yang, XY. et al. An Ultrasensitive Colorimetric Strategy for Detection of Cadmium Based on the Peroxidase-like Activity of G-Quadruplex-Cd(II) Specific Aptamer. ANAL. SCI. 35, 277–282 (2019). https://doi.org/10.2116/analsci.18P248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P248

Keywords

Navigation