Skip to main content
Log in

Detection and Quantification of Bucinnazine Hydrochloride Injection Based on SERS Technology

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this investigation, surface-enhanced Raman spectroscopy (SERS) technology was performed to detect bucinnazine hydrochloride (BH) injection in water and urine. The theoretical Raman spectrum of BH with characteristic peaks was calculated and identified by density functional theory (DFT). Employing an improved silver sol as a SERS active substrate, the SERS spectra of a BH solution with different concentrations were acquired with a 0.5 mol/L KI solution as an aggregation agent. It was determined that the limit of detection (LOD) was low, to 0.01 μg/mL. A good linear relationship of BH between the Raman intensity and the concentrations was obtained in water at a concentration range from 0.5 to 6 μg/mL (R2 = 0.9914), which laid a favorable foundation for quantitative analysis. In addition, the recovery rate of spiked samples from 95.13 to 120.54% were calculated. Finally, the detection of BH injection in artificial urine was completed and the detection limit could reach 0.5 μg/mL, which met the requirements of a rapid on-site detection of drugs in urine. As a result, it indicates that the inspection of BH by the SERS method is with simplicity and high sensitivity, having a great potential for real-time detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-J. Ai, P. Liang, Y.-X. Wu, Q.-M. Dong, J.-B. Li, Y. Bai, B.-J. Xu, Z. Yu, and D.-J. Ni, Food Chem., 2018, 241, 427.

    Article  CAS  PubMed  Google Scholar 

  2. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem. Rev., 2011, 111, 3669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Kaminska, A. A. Kowalska, D. Snigurenko, E. Guziewicz, J. Lewinski, and J. Waluk, Analyst, 2015, 140, 5090.

    Article  CAS  PubMed  Google Scholar 

  4. J.-W. Chen, Y. L, Y. Liang, J.-H. Jiang, G.-L. Shen, and R.- Q. Yu, Anal. Sci., 2009, 25, 347.

    Article  CAS  PubMed  Google Scholar 

  5. M. Knauer, N. P. Ivleva, R. Niessner, and C. Haisch, Anal. Sci., 2010, 26, 761.

    Article  CAS  PubMed  Google Scholar 

  6. X. Lin, W.-L.-J. Hasi, X.-T Lou, S. Lin, F. Yang, B.-S. Jia, D.-Y. Lin, and Z.-W. Lu, RSCAdv., 2014, 4, 51315.

    CAS  Google Scholar 

  7. Z. Mukanova, K. Gudun, Z. Elemessova, L. Khamkhash, E. Ralchenko, and R. Bukasov Anal. Sci., 2018, 34, 183.

    Article  CAS  PubMed  Google Scholar 

  8. S. Schluecker, Angew. Chem., 2014, 45, 4756.

    Article  Google Scholar 

  9. S. Farquharson, C. Shende, A. Sengupta, H. Huang, and F. Inscore, Pharmaceutics, 2011, 3, 425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Feng, W. Chen, and W. Huang, Chin. Opt. Lett., 2009, 7, 1055.

    Article  CAS  Google Scholar 

  11. V. Rana, M. V. Canamares, and T. Kubic, J. Forensic Sci., 2011, 56, 200.

    Article  CAS  PubMed  Google Scholar 

  12. F. Inscore, C. Shende, and A. Sengupta, Appl. Spectrosc., 2011, 65, 1004.

    Article  CAS  PubMed  Google Scholar 

  13. S. Yuksel, A. M. Schwenke, G. Soliveri, S. Ardizzone, K. Weber, D. Cialla-May, S. Hoeppener, U. S. Schubert, and J. Popp, Anal. Chim. Acta, 2016, 939, 93.

    Article  PubMed  Google Scholar 

  14. I. Izquierdo-Lorenzo, S. Sanchez-Cortés, and J. V. Garcia- Ramos, Anal. Methods, 2011, 3, 1540.

    Article  CAS  Google Scholar 

  15. X.-Q. Zhou and X. Qi, Chin. J. Drug Abuse Prev. Treat., 2014, 20, 339.

    Google Scholar 

  16. A. Stafiej, K. Pyrzynska, and F. Regan, J. Sep. Sci., 2015, 30, 985.

    Article  Google Scholar 

  17. M. Yu, N. Ling, and G.-H. Gao, Drug Stand. China, 2009, 10, 44.

    CAS  Google Scholar 

  18. K. Capelle, Braz. J. Phys., 2006, 36, 1318.

    Article  CAS  Google Scholar 

  19. Y.-Q. Qin, X.-H. Ji, J. Jing, H. Liu, H.-L. Wu, and W.-S. Yang, Colloids Surf., A, 2010, 372, 172.

    Article  CAS  Google Scholar 

  20. Z. Han, H. Liu, and B. Wang, Anal. Chem., 2015, 87, 4821.

    Article  CAS  PubMed  Google Scholar 

  21. B. Yu, C. Cao, and P. Li, Talanta, 2018, 186, 427.

    Article  CAS  PubMed  Google Scholar 

  22. P. C. Lee and D. Meise, J. Phys. Chem., 1982, 86, 3391.

    Article  CAS  Google Scholar 

  23. X.-Y. Dong, X.-H. Ji, H.-L. Wu, L. Zhao, J. Li, and W.-S. Yang, J. Phys. Chem. C, 2009, 113, 6573.

    Article  CAS  Google Scholar 

  24. S. Trefi, C. Routaboul, and S. Hamieh, J. Pharm. Biomed. Anal., 2008, 47, 103.

    Article  CAS  PubMed  Google Scholar 

  25. A. Campion and P. Kambhampati, Chem. Soc. Rev., 1998, 27, 241.

    Article  CAS  Google Scholar 

  26. S. Kittler, S. G. Hickey, T. Wolff, and A. Eychmuller, Z. Phys. Chem., 2015, 229, 235.

    Article  CAS  Google Scholar 

  27. X. Lin, W.-L.-J. Hasi, X.-T. Lou, S.-Q.-G.-W. Han, D.-Y. Lin, and Z.-W. Lu, Anal. Methods, 2015, 7, 3869.

    Article  CAS  Google Scholar 

  28. Y.-P. Liu, Z.-W. Lu, X. Lin, H.-B. Zhu, W.-L.-J. Hasi, M.- L. Zhang, X.-R. Zhao, and X.-T. Lou, RSC Adv., 2016, 6, 58387.

    Article  CAS  Google Scholar 

  29. R. M. Dickson and A. D. Becke, J. Chem. Phys., 1993, 99, 3898.

    Article  CAS  Google Scholar 

  30. I. M. Alecu, J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput., 2010, 6, 2872.

    Article  CAS  PubMed  Google Scholar 

  31. L. He, N. J. Kim, H. Li, Z. Hu, and M. Lin, J. Agric. Food Chem., 2008, 56, 9843.

    Article  CAS  PubMed  Google Scholar 

  32. M. Prabhaharan, A. R. Prabakaran, and S. Gunasekaran, Spectrochim. Acta, Part A, 2014, 123, 392.

    Article  CAS  Google Scholar 

  33. L. Jensen and G. C. Schatz, J. Phys. Chem. A, 2006, 110, 5973.

    Article  CAS  PubMed  Google Scholar 

  34. T. Lou, Y. Wang, J. Li, H. Peng, H. Xiong, and L. Chen, Anal. Bioanal. Chem., 2011, 401, 333.

    Article  CAS  PubMed  Google Scholar 

  35. N. R. Jana and T. Pal, Adv. Mater., 2007, 19, 1761.

    Article  CAS  Google Scholar 

  36. J. F. Betz, Y. Cheng, and G. W. Rubloff, Analyst, 2012, 137, 826.

    Article  CAS  PubMed  Google Scholar 

  37. M.-L. Zhang, W.-L.-J. Hasi, X. Lin, X.-R. Zhao, X.-T. Lou, S.-Q.-G.-W. Han, D.-Y. Lin, and Z.-W. Lu, Anal. Methods, 2015, 7, 8241.

    Article  CAS  Google Scholar 

  38. S. E. J. Bell and N. M. S. Sirimuthu, J. Phys. Chem. A, 2005, 109, 7405.

    Article  CAS  PubMed  Google Scholar 

  39. H.-X. Xu, X.-H. Wang, M. P. Persson, H.-Q. Xu, M. Kall, and P. Johansson, Phys. Rev. Lett., 2004, 93, 11945.

    Google Scholar 

  40. C. E. Taylor, J. E. Pemberton, and G. G. Goodman, Appl. Spectrosc., 1999, 53, 1212.

    Article  CAS  Google Scholar 

  41. E.-J. Liang, X.-L. Ye, and W. Kiefer, J. Phys. Chem. A, 1997, 101, 7330.

    Article  CAS  Google Scholar 

  42. H. Zhao, W.-L.-J. Hasi, L. Bao, and S.-Q.-G.-W. Han, Chin. J. Chem., 2017, 35, 1522.

    Article  CAS  Google Scholar 

  43. R. K. And, H. O. Desseyn, and B. R. And, J. Phys. Chem. A, 1999, 103, 4621.

    Article  Google Scholar 

  44. M. Pucetaite, M. Velicka, and J. Pilipavicius, J. Raman Spectrosc., 2016, 47, 681.

    Article  CAS  Google Scholar 

  45. B. L. Goodall, A. M. Robinson., and C. L. Brosseau, Phys. Chem. Chem. Phys., 2013, 15, 1382.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Cheng and Y. Dong, Food Control, 2011, 22, 685.

    Article  CAS  Google Scholar 

  47. L. Xiong, Z. Wang, Q. Xiong, Z. Ruan, Q. Sun, W. Geng, L. Jiang, J. Li, X. Shi, and X. Su, CN Patent, 2017, 87911y.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the International S&T Cooperation Program of China (Grant No. 2011DFA31770), the National Natural Science Foundation of China (Grant No. 31871873) and the Inner Mongolia Autonomous Region Natural Science Foundation of China (Grant No. 2018LH08055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-Li-Ji Hasi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Han, Sqgw., Zhao, H. et al. Detection and Quantification of Bucinnazine Hydrochloride Injection Based on SERS Technology. ANAL. SCI. 34, 1249–1255 (2018). https://doi.org/10.2116/analsci.18P158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P158

Keywords

Navigation