Skip to main content
Log in

Flow-Injection Chemiluminescence Method for Sensitive Determination of Ascorbic Acid in Fruit Juices and Pharmaceutical Samples Using a Luminol-Cetyltrimethylammonium Chloride Reversed Micelle System

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A highly sensitive flow-injection (FI) method was developed for the determination of ascorbic acid using chemiluminescence (CL) based detection. This method involved the following processes: (1) reduction of tetrachloroaurate(III) in hydrochloric acid with ascorbic acid; (2) on-line extraction of the residual Au(III) with rhodamine B from the aqueous hydrochloric acid solution into toluene, followed by the separation of the Au(III)-containing organic phase from the aqueous phase through a microporous Teflon membrane in the flow system; and (3) the measurement of CL produced in a flow cell upon mixing of the extract stream of Au(III) in toluene with luminol in the reversed micellar medium of cetyltrimethylammonium chloride-water in 1-hexanol-cyclohexane, which was injected into a CL reagent stream. In this procedure, a reduction in the CL intensity occurred due to the addition of ascorbic acid to the Au(III) solution. The CL signal of Au(III) decreased with increasing concentration of ascorbic acid in the aqueous sample solution. The proposed procedure allowed the indirect quantitative determination of ascorbic acid in the range of 1.0 × 10−12 to 1.0 × 10−7 M with a correlation coefficient of 0.987 and relative standard deviation of 2.1% (n = 6) at 1.0 × 10−9 M. The proposed FI-CL methodology was successfully applied for quantitative determination of ascorbic acid in fruit juices and pharmaceutical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nojavan, F. Khalilian, F. M. Kiaie, A. Rahimi, Arabanian, and A. S. Chalavi, J. Food Compos. Anal., 2008, 21, 300.

    Article  CAS  Google Scholar 

  2. S. Sharifian and A. Nezamzadeh-Ejhieh, Mater. Sci. Eng., 2016, 58, 510.

    Article  CAS  Google Scholar 

  3. H. J. Ahn, C. Li, H. B. Cho, S. Park, P. S. Chang, and Y. W. Kim, Food Chem., 2015, 169, 366.

    Article  CAS  PubMed  Google Scholar 

  4. T. N. Shekhovtsova, S. V. Muginova, J. A. Luchinina, and A. Z. Galimova, Anal. Chim. Acta, 2006, 573, 125.

    Article  PubMed  Google Scholar 

  5. K. Tyszczuk-Rotko, I. Bęczkowska, M. Wójciak-Kosior, and I. Sowa, Talanta, 2014, 129, 384.

    Article  CAS  PubMed  Google Scholar 

  6. R. Zuo, S. Zhou, Y. Zuo, and Y. Deng, Food Chem., 2015, 182, 242.

    Article  CAS  PubMed  Google Scholar 

  7. R. Sandulescu, S. Mirel, and R. Oprean, J. Pharm. Biomed. Anal., 2000, 23, 77.

    Article  CAS  PubMed  Google Scholar 

  8. N. E. Llamas, M. S. Di Nezio, and B. S. F. Band, J. Food Compos. Anal., 2011, 24, 127.

    Article  CAS  Google Scholar 

  9. T. Maki, N. Soh, K. Nakano, and T. Imato, Talanta, 2011, 85, 1730.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Matsuoka, M. Yamato, T. Yamasaki, F. Mito, and K. I. Yamada, Free Radic. Biol. Med., 2012, 53, 2112.

    Article  CAS  PubMed  Google Scholar 

  11. A. Pardakhty, S. Ahmadzadeh, S. Avazpour, and V. K. Gupta, J. Mol. Liq., 2016, 216, 387.

    Article  CAS  Google Scholar 

  12. N. G. Tsierkezos, S. H. Othman, U. Ritter, L. Hafermann, A. Knauer, J. M. Kohler, C. Downing, and E. K. McCarthy, Sens. Actuators, B, 2016, 231, 218.

    Article  CAS  Google Scholar 

  13. M. Szultka, M. Buszewska-Forajta, R. Kaliszan, and B. Buszewski, Electrophoresis, 2014, 35, 585.

    Article  CAS  PubMed  Google Scholar 

  14. S. Tang and H. K. Lee, Food Chem., 2016, 199, 533.

    Article  CAS  PubMed  Google Scholar 

  15. H. Filik, D. Aksu, D. Giray, and R. Apak, Drug Test. Anal., 2012, 4, 493.

    Article  CAS  PubMed  Google Scholar 

  16. M. C. Yebra-Biurrun, Talanta, 2000, 52, 367.

    Article  CAS  PubMed  Google Scholar 

  17. D. G. Themelis, P. D. Tzanavaras, and F. S. Kika, Talanta, 2001, 55, 127.

    Article  CAS  PubMed  Google Scholar 

  18. T. Fujiwara and T. Kumamaru, Spectrochim. Acta Rev., 1990, 13, 399.

    CAS  Google Scholar 

  19. H. Kodamatami and T. Tomiyasu, J. Chromatogr A, 2013, 1288, 155.

    Article  Google Scholar 

  20. T. H. A. Hasanin, Y. Okamoto, and T. Fujiwara, Talanta, 2016, 148, 700.

    Article  CAS  PubMed  Google Scholar 

  21. T. Yamamoto, Y. Tsunemine, F. Hayakawa, T. H. A. Hasanin, Y. Okamoto, S. Ishizaka, and T. Fujiwara, Anal. Sci., 2013, 29, 73.

    Article  CAS  PubMed  Google Scholar 

  22. T. H. A. Hasanin, T. Yamamoto, Y. Okamoto, S. Ishizaka, and T. Fujiwara, Anal. Sci., 2016, 32, 245.

    Article  CAS  PubMed  Google Scholar 

  23. M. P. Pileni, in “Structure and Reactivity in Reverse Micelles”, 1989, Elsevier, Amsterdam, 44.

    Google Scholar 

  24. Imdadullah, T. Fujiwara, and T. Kumamaru, Anal. Chem., 1991, 63, 2348.

    Article  Google Scholar 

  25. T. Fujiwara, K. Murayama, Imdadullah, and T. Kumamaru, Microchem. J., 1994, 49, 183.

    Article  CAS  Google Scholar 

  26. T. Fujiwara, I. U. Mohammadzai, M. Kojima, and T. Kumamaru, Anal. Sci., 2006, 22, 67.

    Article  CAS  PubMed  Google Scholar 

  27. Y. J. Ma, M. Zhou, X. Y. Jin, B. Z. Zhang, H. Chen, and N. Y. Guo, Anal. Chim. Acta, 2002, 464, 289.

    Article  CAS  Google Scholar 

  28. A. A. Alwarthan, Analyst, 1993, 118, 639.

    Article  CAS  Google Scholar 

  29. Y. P. Dong, T. T. Gao, X. F. Chu, J. Chen, and C. M. Wang, J. Lumin., 2014, 154, 350.

    Article  CAS  Google Scholar 

  30. H. Chen, R. B. Li, L. Lin, G. S. Guo, and J. M. Lin, Talanta, 2010, 81, 1688.

    Article  CAS  PubMed  Google Scholar 

  31. Z. H. Wang, X. Teng, and C. Lu, Analyst, 2012, 137, 1876.

    Article  CAS  PubMed  Google Scholar 

  32. T. Kato, O. Ohno, T. Nagoshi, Y. Ichinose, and S. Igarashi, Anal. Sci., 2005, 21, 579.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research, No. 23550097, from the Ministry of Education, Science, Sports, and Culture, Japan. T. H. A. H. thanks the analytical chemistry laboratory at Hiroshima University, Japan, for awarding a Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer H. A. Hasanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanin, T.H.A., Fujiwara, T. Flow-Injection Chemiluminescence Method for Sensitive Determination of Ascorbic Acid in Fruit Juices and Pharmaceutical Samples Using a Luminol-Cetyltrimethylammonium Chloride Reversed Micelle System. ANAL. SCI. 34, 777–782 (2018). https://doi.org/10.2116/analsci.17P571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17P571

Keywords

Navigation