Skip to main content
Log in

Sulfur Chemical State and Chemical Composition of Insoluble Substance in Soft Rime, Hard Rime, and Snow Collected in Remote and Rural Areas in Japan Using Wavelength-dispersive X-ray Fluorescence

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Using a commercially available wavelength-dispersive X-ray fluorescence (WDXRF) spectrometer, the chemical composition and S-Kα spectrum of rime and snow samples collected in remote and rural areas of Japan were measured with a membrane filter sample technique to investigate the long-range transport of aerosol from the East Asian continent. Insoluble substances are derived into three categories: 1) conventional mineral origin (crustal substance), 2) urban dust origin (Fe-Zn-Ca) and 3) coal origin (S-As). Assuming that (i) S(VI) was found as a plaster-like substance in hard rime, depending on [Ca], and that (ii) S(-II) was found as non-crustal sulfur compounds, fractions of S(VI) and S(-II) in rime could be calculated as 35 ± 6 and 66 ± 7% by [Ca], which is in agreement with 32 ± 8 and 68 ± 8%, respectively, by the chemical shift of the S-Kα line. During a one-day meteorological event that included the accumulation of both rime and snow, differences to the snow-like content corresponded to characteristics typical of rime since the chemical compositions of rime also includes the composition of the snow. The fractions of 22 ± 12% of S(VI) and 76 ± 12% of S(-II), respectively, were found in rime. The fraction of S(-II) decreased from the Chugoku district towards the Shikoku district. Along the coast of the Japan Sea, the fraction of S(-II) decreased from Chugoku district toward the Northeast Japan. It can be proposed that other analytical techniques of S, Al, and Ca in that are favorable to this fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tsunogai and T. Shinagawa, Geochem. Soc. Jpn., 1997, 11, 1.

    Google Scholar 

  2. H. Mukai, Y. Ambe, T. Muku, K. Takeshita, T. Fukuma, J. Takahashi, and S. Mizota, Res. Rep. Natl. Inst. Environ. Stud., Jpn., 1989, 123, 7.

    CAS  Google Scholar 

  3. Y. Sekine and Y. Hashimoto, J. Jpn. Soc. Air Pollut., 1991, 26, 216.

    CAS  Google Scholar 

  4. D. Zhao, J. Xiong, Y. Xu, and W. Chan, Atmos. Environ., 1988, 22, 349.

    Article  CAS  Google Scholar 

  5. X.-Y. Yang, Y. Okada, N. Tang, S. Matsunaga, K. Tamura, J.-M. Lin, T. Kameda, A. Toriba, and K. Hayakawa, Atmos. Environ., 2007, 41, 2710.

    Article  CAS  Google Scholar 

  6. R. Motoyama, F. Yanagisawa, N. Akata, Y. Suzuki, Y. Kanai, T. Kojima, A. Kawabata, A. Ueda, A. Kawabata, and A. Ueda, Seppyou, 2002, 64, 49.

    Google Scholar 

  7. N. Akata, F. Yanagisawa, R. Motoyama, A. Kawabata, and A. Ueda, Seppyou, 2002, 64, 173.

    Google Scholar 

  8. H. Mukai, A. Tanaka, and T. Fujii, J. Jpn. Soc. Atmos. Environ., 1999, 34, 86.

    CAS  Google Scholar 

  9. L. X. Zhong and Y.-S. Chung, Atmos. Environ., 1996, 30, 2355.

    Article  Google Scholar 

  10. S. Itabashi, H. Hayami, J. Jpn. Soc. Atmos. Environ., 2015, 50, 138.

    Google Scholar 

  11. T. Tanabe, Y. Tanaka, D. Tanaka, Y. Taniguchi, M. Toyoda, J. Kawai, H. Ishii, C. Riu, Y. Yilixiati, S. Hayakawa, Y. Kitajima, and Y. Terada, Bunseki Kagaku, 2004, 53, 1411.

    Article  CAS  Google Scholar 

  12. Y. Ban, I. Watanabe, K. Furuya, H. Matsushita, and Y. Gohshi, Bunseki Kagaku, 1985, 34, 264.

    Article  CAS  Google Scholar 

  13. Y. Ban, K. Furuya, T. Kikuchi, A.-P. Wan, Y.-C. Huang, C.- G. Ma, and J. Wu, J. Jpn. Soc. Air Pollut., 1985, 20, 470.

    CAS  Google Scholar 

  14. W. H. Calkins, Energy Fuels, 1981, 1, 59.

    Article  Google Scholar 

  15. Z. Shi, L. Shao, T. P. Jones, A. G. Whittaker, S. Lu, K. A. Bérubéc, T. He, and R. J. Richards, Atmos. Environ., 2003, 37, 4097.

    Article  CAS  Google Scholar 

  16. S. Imai, Y. Yamamoto, Y. Sanagawa, Y. Kurumi, I. Kurotani, J. Nishimoto, and Y. Kikuchi, Bunseki Kagaku, 2017, 66, 95.

    Article  CAS  Google Scholar 

  17. Y. Sanagawa, Y. Kurumi, Y. Yamamoto, T. Kamimura, and S. Imai, Bunseki Kagaku, 2014, 63, 351.

    Article  CAS  Google Scholar 

  18. Y. Kurumi, Y. Sanagawa, Y. Yamamoto, T. Kamimura, and S. Imai, Bunseki Kagaku, 2014, 63, 837.

    Article  CAS  Google Scholar 

  19. S. Imai, Y. Yamamoto, and T. Kamimura, Bunseki Kagaku, 2016, 65, 211.

    Article  CAS  Google Scholar 

  20. G. P. Huffman, S. Mitra, F. E. Huggins, N. Shah, S. Vaidya, and F. Lu, Energy Fuels, 1991, 5, 574.

    Article  CAS  Google Scholar 

  21. R. G. Hurly and E. W. White, Anal. Chem., 1974, 46, 2234.

    Article  Google Scholar 

  22. L. S. Brirks and J. V. Gilfrich, Spectrochim. Acta, Part B, 1978, 33, 305.

    Article  Google Scholar 

  23. E. Martins and D. S. Urch, Anal. Chim. Acta, 1994, 286, 411.

    Article  CAS  Google Scholar 

  24. Y. Gohshi, O. Hirao and I. Suzuki, Adv. X-ray Anal., 1975, 18, 406.

    CAS  Google Scholar 

  25. S. Matsumoto, Y. Tanaka, H. Ishii, T. Tanabe, Y. Kitajima, and J. Kawai, Spectrochim. Acta, Part B, 2006, 61, 991.

    Article  Google Scholar 

  26. M. Kavcic, A. G. Kraydas, and C. Zarkadas, X-ray Spectrom., 2005, 34, 310.

    Article  CAS  Google Scholar 

  27. W. Qi, J. Kawai, S. Fukushima, A. Iida, K. Furuya, and Y. Gohshi, Bunseki Kagaku, 1987, 36, 301.

    Article  CAS  Google Scholar 

  28. H. Itoh, Y. Takahashi, A. Fukushima, and Y. Gohshi, Adv. X-ray Anal., 1989, 20, 59.

    Google Scholar 

  29. S. Gao, T.-C. Luo, B.-R. Zhang, H.-F. Zhang, Y.-W. Han, Z.-D. Zhao, and Y. K. Hu, Geochim. Cosmochim. Acta, 1998, 62, 1959.

    Article  CAS  Google Scholar 

  30. T. Narukawa, A. Takatsu, K. Chiba, K. W. Riley, and D. H. French, J. Environ. Monit., 2005, 7, 1342.

    Article  CAS  PubMed  Google Scholar 

  31. Meteorological Data Explorer, Centre for Global Environmental Research (CGER-METEX ), http://db.cger.nies.go.jp/metex/index.html.

  32. C.-L. Chau, Int. J. Coal Geol., 2012, 100, 1.

    Article  Google Scholar 

  33. K. Sugawara, T. Gunji, and T. Sugawara, Energy Fuels, 1997, 11, 1272.

    Article  CAS  Google Scholar 

  34. K. Sugawara, Y. Enda, T. Kato, T. Sugawara, and M. Shirai, Energy Fuels, 2003, 17, 204.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JSPS KAKENHI Grant No. 26340084 supported this work. We would like to thank the Hitachi High-Technologies Co., Ltd. for SEM observation.

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imai, S., Yamamoto, Y., Yamamoto, T. et al. Sulfur Chemical State and Chemical Composition of Insoluble Substance in Soft Rime, Hard Rime, and Snow Collected in Remote and Rural Areas in Japan Using Wavelength-dispersive X-ray Fluorescence. ANAL. SCI. 34, 589–598 (2018). https://doi.org/10.2116/analsci.17P277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17P277

Keywords

Navigation