Skip to main content
Log in

The potential-Ramsey number of Kn and K kt

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

A nonincreasing sequence π = (d1,…, dn) of nonnegative integers is a graphic sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to as a realization of π. Given two graphs G1 and G2, A. Busch et al. (2014) introduced the potential-Ramsey number of G1 and G2, denoted by rpot(G1, G2), as the smallest nonnegative integer m such that for every m-term graphic sequence π, there is a realization G of π with G1G or with \({G_2} \subseteq \overline G \), where \(\overline G \) is the complement of G. For t ≽ 2 and \(0\leqslant k\leqslant \left\lfloor {{t \over 2}} \right\rfloor \), let K kt be the graph obtained from Kt by deleting k independent edges. We determine rpot (Kn, K kt ) for \(t\geqslant 3,1\leqslant k\leqslant \left\lfloor {{t \over 2}} \right\rfloor \) and \(n\geqslant \left\lceil {\sqrt {2k}} \right\rceil \), which gives the complete solution to a result in J. Z. Du, J. H. Yin (2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Bondy, U. S. R. Murty: Graph Theory with Applications. American Elsevier, New York, 1976.

    Book  Google Scholar 

  2. A. Busch, M. J. Ferrara, S. G. Hartke, M. S. Jacobson: A degree sequence variant of graph Ramsey numbers. Graphs Comb. 30 (2014), 847–859.

    Article  MathSciNet  Google Scholar 

  3. A. Busch, M. J. Ferrara, S. G. Hartke, M. S. Jacobson, H. Kaul, D. B. West: Packing of graphic n-tuples. J. Graph Theory 70 (2012), 29–39.

    Article  MathSciNet  Google Scholar 

  4. J. Du, J. Yin: A further result on the potential-Ramsey number of G1 and G2. Filomat 36 (2019), 1605–1617.

    Article  Google Scholar 

  5. J.-Z. Du, J.-H. Yin: A new lower bound on the potential-Ramsey number of two graphs. Acta Math. Appl. Sin., Engl. Ser. 37 (2021), 176–182.

    Article  MathSciNet  Google Scholar 

  6. Z. Dvořák, B. Mohar: Chromatic number and complete graph substructures for degree sequences. Combinatorica 33 (2013), 513–529.

    Article  MathSciNet  Google Scholar 

  7. P. Erdős, T. Gallai: Graphs with prescribed degrees of vertices. Mat. Lapok 11 (1960), 264–274. (In Hungarian.)

    MATH  Google Scholar 

  8. P. Erdős, M. S. Jacobson, J. Lehel: Graphs realizing the same degree sequences and their respective clique numbers. Graph Theory, Combinatorics and Applications. Vol. 1. John Wiley & Sons, New York, 1991, pp. 439–449.

    MATH  Google Scholar 

  9. M. J. Ferrara, T. D. Lesaulnier, C. K. Moffatt, P. S. Wenger: On the sum necessary to ensure a degree sequence is potentially H-graphic. Combinatorica 36 (2016), 687–702.

    Article  MathSciNet  Google Scholar 

  10. M. J. Ferrara, J. Schmitt: A general lower bound for potentially H-graphic sequences. SIAM J. Discrete Math. 23 (2009), 517–526.

    Article  MathSciNet  Google Scholar 

  11. R. J. Gould, M. S. Jacobson, J. Lehel: Potentially G-graphical degree sequences. Combinatorics, Graph Theory and Algorithms. Vol. I. New Issues Press, Kalamazoo, 1999, pp. 451–460.

    Google Scholar 

  12. S. L. Hakimi: On realizability of a set of integers as degrees of vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 10 (1962), 496–506.

    Article  MathSciNet  Google Scholar 

  13. V. Havel: A remark on the existence of finite graphs. Čas. Pěstování Mat. 80 (1955), 477–480. (In Czech.)

    Article  Google Scholar 

  14. A. R. Rao: The clique number of a graph with a given degree sequence. Proceedings of the Symposium on Graph Theory. ISI Lecture Notes 4. Macmillan, New Delhi, 1979, pp. 251–267.

    Google Scholar 

  15. N. Robertson, Z.-X. Song: Hadwiger number and chromatic number for near regular degree sequences. J. Graph Theory 64 (2010), 175–183.

    MathSciNet  MATH  Google Scholar 

  16. J. Yin, J. Li: A variation of a conjecture due to Erdős and Sós. Acta Math. Sin., Engl. Ser. 25 (2009), 795–802.

    Article  MathSciNet  Google Scholar 

  17. J.-H. Yin, J.-S. Li: Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size. Discrete Math. 301 (2005), 218–227.

    Article  MathSciNet  Google Scholar 

  18. J.-H. Yin, L. Meng, M.-X. Yin: Graphic sequences and split graphs. Acta Math. Appl. Sin., Engl. Ser. 32 (2016), 1005–1014.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hua Yin.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11961019) and Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, JZ., Yin, JH. The potential-Ramsey number of Kn and K kt . Czech Math J 72, 513–522 (2022). https://doi.org/10.21136/CMJ.2022.0017-21

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2022.0017-21

Keywords

MSC 2020

Navigation