Skip to main content
Log in

Coherence relative to a weak torsion class

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let R be a ring. A subclass T of left R-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let T be a weak torsion class of left R-modules and n a positive integer. Then a left R-module M is called T-finitely generated if there exists a finitely generated submodule N such that M/NT; a left R-module A is called (T,n)-presented if there exists an exact sequence of left R-modules

$$0 \to {K_{n - 1}} \to {F_{n - 1}} \to \cdots \to {F_1} \to {F_0} \to M \to 0$$

such that F0,..., Fn−1 are finitely generated free and Kn−1 is T-finitely generated; a left R-module M is called (T,n)-injective, if Extn R (A,M) = 0 for each (T, n+1)-presented left R-module A; a right R-module M is called (T,n)-flat, if TorR n (M,A) = 0 for each (T, n+1)-presented left R-module A. A ring R is called (T,n)-coherent, if every (T, n+1)-presented module is (n + 1)-presented. Some characterizations and properties of these modules and rings are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. U. Chase: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457–473.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. J. Cheatham, D. R. Stone: Flat and projective character modules. Proc. Am. Math. Soc. 81 (1981), 175–177.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Chen, N. Ding: On n-coherent rings. Commun. Algebra 24 (1996), 3211–3216.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. L. Costa: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997–4011.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Enochs: A note on absolutely pure modules. Canad. Math. Bull. 19 (1976), 361–362.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin, 2000.

    Google Scholar 

  7. E. E. Enochs, O. M. G. Jenda, J. A. Lopez-Ramos: The existence of Gorenstein flat covers. Math. Scand. 94 (2004), 46–62.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Finkel Jones: Coherence relative to an hereditary torsion theory. Commun. Algebra 10 (1982), 719–739.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Holm, P. Jørgensen: Covers, precovers, and purity. Illinois J. Math. 52 (2008), 691–703.

    MathSciNet  MATH  Google Scholar 

  10. L. Mao, N. Ding: Relative coherence of rings. J. Algebra Appl. 11 (2012), 1250047, 16 pages.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Megibben: Absolutely pure modules. Proc. Am. Math. Soc. 26 (1970), 561–566.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. J. Rotman: An Introduction to Homological Algebra. Pure and Applied Mathematics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London, 1979.

    Google Scholar 

  13. B. Stenström: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323–329.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Stenström: Rings of Quotients. An Introduction to Methods of Ring Theory. Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York, 1975.

    Google Scholar 

  15. J. Trlifaj: Cover, Envelopes, and Cotorsion Theories. Lecture notes for the workshop. Homological Methods in Module Theory, Cortona, 2000.

    Google Scholar 

  16. R. Wisbauer: Foundations of Module and Ring Theory. A Handbook for Study and Research. Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia, 1991.

    Google Scholar 

  17. X. Yang, Z. Liu: n-flat and n-FP-injective modules. Czech. Math. J. 61 (2011), 359–369.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Zhou: On n-coherent rings and (n, d)-rings. Commun. Algebra 32 (2004), 2425–2441.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanmin Zhu.

Additional information

This research was supported by the Natural Science Foundation of Zhejiang Province, China (LY18A010018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z. Coherence relative to a weak torsion class. Czech Math J 68, 455–474 (2018). https://doi.org/10.21136/CMJ.2018.0494-16

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2018.0494-16

Keywords

MSC 2010

Navigation