Skip to main content
Log in

On almost everywhere differentiability of the metric projection on closed sets in lp(ℝn), 2 < p < ∞

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let F be a closed subset of ℝn and let P(x) denote the metric projection (closest point mapping) of x ∈ ℝn onto F in lp-norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in ℝn in the Euclidean case p = 2. We consider the case 2 < p < ∞ and prove that the ith component Pi(x) of P(x) is differentiable a.e. if Pi(x) 6= xi and satisfies Hölder condition of order 1/(p−1) if Pi(x) = xi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abatzoglou: Finite-dimensional Banach spaces with a. e. differentiable metric projection. Proc. Am. Math. Soc. 78 (1980), 492–496.

    Article  MathSciNet  Google Scholar 

  2. E. Asplund: Differentiability of the metric projection in finite dimensional metric spaces. Proc. Am. Math. Soc. 38 (1973), 218–219.

    MathSciNet  MATH  Google Scholar 

  3. J. Clarkson: Uniformly convex spaces. Trans. Am. Math. Soc. 40 (1936), 396–414.

    Article  MathSciNet  Google Scholar 

  4. H. Federer: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, Berlin, 1969.

    Google Scholar 

  5. S. Fitzpatrick, R. R. Phelps: Differentiability of metric projection in Hilbert space. Trans. Am. Math. Soc. 270 (1982), 483–501.

    Article  MathSciNet  Google Scholar 

  6. O. Hanner: On the uniform convexity of Lp and lp. Ark. Mat. 3 (1956), 239–244.

    Article  MathSciNet  Google Scholar 

  7. J. B. Kruskal: Two convex counterexamples: A discontinuous envelope function and a non-differentiable nearest point mapping. Proc. Am. Math. Soc. 23 (1969), 697–703.

    Article  Google Scholar 

  8. R. R. Phelps: Convex sets and nearest points. Proc. Am. Math. Soc. 8 (1957), 790–797.

    Article  MathSciNet  Google Scholar 

  9. R. R. Phelps: Convex sets and nearest points II. Proc. Am. Math. Soc. 9 (1958), 867–873.

    Article  MathSciNet  Google Scholar 

  10. Ju. G. Rešetnyak: Generalized derivatives and differentiability almost everywhere. Mat. Sb., N. Ser. 75(117) (1968), 323–334. (In Russian.)

    MathSciNet  Google Scholar 

  11. A. Shapiro: Differentiability properties of metric projection onto convex sets. J. Optim. Theory Appl. 169 (2016), 953–964.

    Article  MathSciNet  Google Scholar 

  12. L. Zajíček: On differentiation of metric projections in finite dimensional Banach spaces. Czech. Math. J. 33 (1983), 325–336.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tord Sjödin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sjödin, T. On almost everywhere differentiability of the metric projection on closed sets in lp(ℝn), 2 < p < ∞. Czech Math J 68, 943–951 (2018). https://doi.org/10.21136/CMJ.2018.0038-17

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2018.0038-17

Keywords

MSC 2010

Navigation