Skip to main content
Log in

Polytopes, quasi-minuscule representations and rational surfaces

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki: Elements of Mathematics, Lie Groups and Lie algebras. Chapters 4–6. Springer, Berlin, 2002.

    Book  MATH  Google Scholar 

  2. H. S. M. Coxeter: Regular and semiregular polytopes. II. Math. Z. 188 (1985), 559–591.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. S. M. Coxeter: Regular and semi-regular polytopes. III. Math. Z. 200 (1988), 3–45.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. S. M. Coxeter: The evolution of Coxeter-Dynkin diagrams. Nieuw Arch. Wiskd., IV. Ser. 9 (1991), 233–248.

    MathSciNet  MATH  Google Scholar 

  5. M. Demazure, H. Pinkham, B. Teissier (eds.): Séminaire sur les Singularités des Surfaces. Centre de Mathématiques de l’Ecole Polytechnique, Palaiseau 1976–1977, Lecture Notes in Mathematics 777, Springer, Berlin, 1980. (In French.)

    Google Scholar 

  6. R. Y. Donagi: Principal bundles on elliptic fibrations. Asian J. Math. 1 (1997), 214–223.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Donagi: Taniguchi lectures on principal bundles on elliptic fibrations. Integrable Systems and Algebraic Geometry. Conf. Proc., Kobe/Kyoto, 1997, World Scientific, Singapore, 1998, pp. 33–46.

    Google Scholar 

  8. R. Friedman, J. Morgan, E. Witten: Vector bundles and F theory. Commun. Math. Phys. 187 (1997), 679–743.

    Article  MATH  Google Scholar 

  9. P. Henry-Labordère, B. Julia, L. Paulot: Borcherds symmetries in M-theory. J. High Energy Phys. 2002 (2002), No. 49, 31 pages.

    Google Scholar 

  10. P. Henry-Labordère, B. Julia, L. Paulot: Real Borcherds superalgebras and M-theory. J. High Energy Phys. 2003 (2003), No. 60, 21 pages.

    Google Scholar 

  11. J.-H. Lee: Gosset polytopes in Picard groups of del Pezzo surfaces. Can. J. Math. 64 (2012), 123–150.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.-H. Lee: Contractions of del Pezzo surfaces to P2 or P1 × P1. Rocky Mt. J. Math. 46 (2016), 1263–1273.

    Article  Google Scholar 

  13. N. C. Leung: ADE-bundle over rational surfaces, configuration of lines and rulings. Available at arXiv:math. AG/0009192.

  14. N. C. Leung, M. Xu, J. Zhang: Kac-Moody \({\tilde E_k}\) -bundles over elliptic curves and del Pezzo surfaces with singularities of type A. Math. Ann. 352 (2012), 805–828.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. C. Leung, J. Zhang: Moduli of bundles over rational surfaces and elliptic curves. I: Simply laced cases. J. Lond. Math. Soc., II. Ser. 80 (2009), 750–770.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Looijenga: Root systems and elliptic curves. Invent. Math. 38 (1976), 17–32.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. I. Manin: Cubic Forms: Algebra, Geometry, Arithmetic. North-Holland Mathematical Library 4, North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York, 1974.

    Google Scholar 

  18. L. Manivel: Configurations of lines and models of Lie algebras. J. Algebra 304 (2006), 457–486.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. S. Seshadri: Geometry of G/P. I: Theory of standard monomials for minuscule representations. C. P. Ramanujam—A Tribute. Tata Inst. Fundam. Res., Stud. Math. 8, Springer, Berlin, 1978, pp. 207–239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyouk Lee.

Additional information

The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2012783). The second author is supported by NSFC (Project No. 11401489), and the third author is supported by NCET-13-0396 and NSFC (Project No. 11271268).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Xu, M. & Zhang, J. Polytopes, quasi-minuscule representations and rational surfaces. Czech Math J 67, 397–415 (2017). https://doi.org/10.21136/CMJ.2017.0676-15

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2017.0676-15

Keywords

MSC 2010

Navigation