Skip to main content
Log in

Non-local damage modelling of quasi-brittle composites

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Most building materials can be characterized as quasi-brittle composites with a cementitious matrix, reinforced by some stiffening particles or elements. Their massive exploitation motivates the development of numerical modelling and simulation of behaviour of such material class under mechanical, thermal, etc. loads, including the evaluation of the risk of initiation and development of micro- and macro-fracture. This paper demonstrates the possibility of certain deterministic prediction, applying the dynamical approach using the Kelvin viscoelastic model and cohesive interface properties. The existence and convergence results rely on the semilinear computational scheme coming from the method of discretization in time, using several types of Rothe sequences, coupled with the extended finite element method (XFEM) for practical calculations. Numerical examples refer to cementitious samples reinforced by short steel fibres, with increasing number of applications as constructive parts in civil engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Alton: Existence in nonlocal elasticity. Arch. Mech. 41 (1989), 25–36.

    MathSciNet  Google Scholar 

  2. I. Babuška, J. M. Melenk: The partition of unity method. Int. J. Numer. Methods Eng. 40 (1997), 727–758.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Belytschko, T. Black: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45 (1999), 601–620.

    Article  MATH  Google Scholar 

  4. A. Bermúdez de Castro: Continuum Thermomechanics. Progress in Mathematical Physics 43. Birkhäuser, Basel, 2005.

    Book  MATH  Google Scholar 

  5. G. S. Bhatia, G. Arora: Radial basis function methods for solving partial differential equations: A review. Indian J. Sci. Technol. 9 (2016), Article ID 45, 18 pages.

  6. L. Bouhala, A. Makradi, S. Belouettar, H. Kiefer-Kamal, P. Fréres: Modelling of failure in long fibres reinforced composites by X-FEM and cohesive zone model. Composites B, Eng. 55 (2013), 352–361.

    Article  Google Scholar 

  7. J. K. Bunkure: Lebesgue-Bochner spaces and evolution triples. Int. J. Math. Appl. 7 (2019), 41–52.

    Google Scholar 

  8. A. Cianchi, V. Maz’ya: Sobolev inequalities in arbitrary domains. Adv. Math. 293 (2016), 644–696.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. S. Clark: Short proof of a discrete Gronwall inequality. Discrete Appl. Math. 16 (1987), 279–281.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Dal Maso, G. Lazzaroni: Crack growth with non-interpenetration: A simplified proof for the pure Neumann problem. Discrete Contin. Dyn. Syst. 31 (2011), 1219–1231.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Del Piero, D. R. Owen: Structured deformations of continua. Arch. Ration. Mech. Anal. 124 (1993), 99–155.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Dlouhý, S. Pouillon: Application of the design code for steel-fibre-reinforced concrete into finite element software. Beton 116 (2020), 8–13.

    Google Scholar 

  13. P. Drábek, J. Milota: Methods of Nonlinear Analysis: Applications to Differential Equations. Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, Basel, 2013.

    Book  MATH  Google Scholar 

  14. J. Eliáš, M. Vořechovský, J. Skoček, Z. P. Bažant: Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data. Eng. Fract. Mech. 135 (2015), 1–16.

    Article  Google Scholar 

  15. E. Emmrich, D. Puhst: Measure-valued and weak solutions to the nonlinear peridynamic model in nonlocal elastodynamics. Nonlinearity 28 (2015), 285–307.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. C. Eringen: Theory of Nonlocal Elasticity and Some Applications. Technical Report 62. Princeton University Press, Princeton, 1984.

    Book  Google Scholar 

  17. A. C. Eringen: Nonlocal Continuum Field Theories. Springer, New York, 2002.

    MATH  Google Scholar 

  18. A. Evgrafov, J. C. Bellido: From non-local Eringen’s model to fractional elasticity. Math. Mech. Solids 24 (2019), 1935–1953.

    Article  MathSciNet  MATH  Google Scholar 

  19. T.-P. Fries, T. Belytschko: The intrinsic XFEM: A method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Methods Eng. 68 (2006), 1358–1385.

    Article  MATH  Google Scholar 

  20. Z. Gao, L. Zhang, W. Yu: A nonlocal continuum damage model for brittle fracture. Eng. Fract. Mech. 189 (2018), 481–500.

    Article  Google Scholar 

  21. C. Giry, F. Dufour, J. Mazars: Stress-based nonlocal damage model. Int. J. Solids Struct. 48 (2011), 3431–3443.

    Article  Google Scholar 

  22. S. Grija, D. Shanthini, S. Abinaya: A review on fiber reinforced concrete. Int. J. Civil Eng. Technol. 7 (2016), 386–392.

    Google Scholar 

  23. K. Hashiguchi: Elastoplasticity Theory. Lecture Notes in Applied and Computational Mechanics 69. Springer, Berlin, 2014.

    MATH  Google Scholar 

  24. P. Havlásek, P. Grassl, M. Jirásek: Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models. Eng. Fract. Mech. 157 (2016), 72–85.

    Article  Google Scholar 

  25. A. Hoekstra: Design methodologies for steel-fibre-reinforced concrete and a new methodology for a real time quality control. Beton 116 (2020), 44–49.

    Google Scholar 

  26. C. O. Horgan: Eigenvalue estimates and the trace theorem. J. Math. Anal. Appl. 69 (1979), 231–242.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Javili, R. Morasata, E. Oterkus, S. Oterkus: Peridynamics review. Math. Mech. Solids 24 (2019), 3714–3739.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Jirásek: Damage and smeared crack models. Numerical Modeling of Concrete Cracking. CISM Courses and Lectures 532. Springer, Wien, 2011, pp. 1–49.

    Book  MATH  Google Scholar 

  29. M. Kaliske, H. Dal, R. Fleischhauer, C. Jenkel, C. Netzker: Characterization of fracture processes by continuum and discrete modelling. Comput. Mech. 50 (2012), 303–320.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Kawde, A. Warudkar: Steel fibre reinforced concrete: A review. Int. J. Eng. Sci. Res. Technol. 6 (2017), 130–133.

    Google Scholar 

  31. A. R. Khoei: Extended Finite Element Method: Theory and Applications. Wiley Series in Computational Mechanics. John Wiley & Sons, New York, 2015.

    MATH  Google Scholar 

  32. V. Kozák, Z. Chlup: Modelling of fibre-matrix interface of brittle matrix long fibre composite by application of cohesive zone method. Key Eng. Materials 465 (2011), 231–234.

    Article  Google Scholar 

  33. V. Kozák, Z. Chlup, P. Padělek, I. Dlouhý: Prediction of the traction separation law of ceramics using iterative finite element modelling. Solid State Phenomena 258 (2017), 186–189.

    Article  Google Scholar 

  34. M. Lazar, G. A. Maugin, E. C. Aifantis: On a theory of nonlocal elasticity of bi-Helm-holtz type and some applications. Int. J. Solids Struct. 43 (2006), 1404–1421.

    Article  MATH  Google Scholar 

  35. G. Lazzaroni: Quasistatic crack growth in finite elasticity with Lipschitz data. Ann. Mat. Pura Appl. (4) 190 (2011), 165–194.

    Article  MathSciNet  MATH  Google Scholar 

  36. X. Li, J. Chen: An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials. Comput. Methods Appl. Mech. Eng. 315 (2017), 744–759.

    Article  MathSciNet  MATH  Google Scholar 

  37. X. Li, W. Gao, W. Liu: A mesh objective continuum damage model for quasi-brittle crack modelling and finite element implementation. Int. J. Damage Mech. 28 (2019), 1299–1322.

    Article  Google Scholar 

  38. R. W. Macek, S. A. Silling: Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43 (2007), 1169–1178.

    Article  MathSciNet  Google Scholar 

  39. Z. Majdisova, V. Skala: Radial basis function approximations: Comparison and applications. Appl. Math. Modelling 51 (2017), 728–743.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Mielke, T. Roubíček: Rate-Independent Systems: Theory and Applications. Applied Mathematical Sciences 193. Springer, New York, 2015.

    MATH  Google Scholar 

  41. M. Moradi, A. R. Bagherieh, M. R. Esfahani: Constitutive modeling of steel fiber-reinforced concrete. Int. J. Damage Mech. 29 (2020), 388–412.

    Article  Google Scholar 

  42. M. Morandotti: Structured deformation of continua: Theory and applications. Mathematical Analysis of Continuum Mechanics and Industrial Applications II. Springer, Singapore, 2018, pp. 125–136.

    Google Scholar 

  43. N. Nakamura: Extended Rayleigh damping model. Front. Built Environ. 2 (2016), Article ID 14, 13 pages.

  44. R. H. J. Peerlings, R. de Borst, W. A. M. Brekelmans, M. Geers: Gradient enhanced damage modelling of concrete fracture. Mech. Cohesive-frictional Mater. 3 (1998), 323–342.

    Article  Google Scholar 

  45. G. Pijaudier-Cabot, J. Mazars: Damage models for concrete. Section 6.13. Handbook of Materials Behavior Models. Volume II (J. Lemaitre, ed.). Academic Press, London, 2001, pp. 500–512.

  46. M. G. Pike, C. Oskay: XFEM modeling of short microfiber reinforced composites with cohesive interfaces. Finite Elem. Anal. Des. 106 (2005), 16–31.

    Article  Google Scholar 

  47. Yu. Z. Povstenko: The nonlocal theory of elasticity and its application to the description of defects in solid bodies. J. Math. Sci. 97 (1999), 3840–3845.

    Article  Google Scholar 

  48. P. Ray: Statistical physics perspective of fracture in brittle and quasi-brittle materials. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 377 (2019), Article ID 20170396, 13 pages.

  49. K. Rektorys: The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications 4. D. Reidel, Dordrecht, 1982.

    MATH  Google Scholar 

  50. T. Roubíček: Nonlinear Partial Differential Equations with Applications. ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel, 2005.

    MATH  Google Scholar 

  51. T. Roubíček: Thermodynamics of rate-independent processes in viscous solids at small strains. SIAM J. Math. Anal. 42 (2010), 256–297.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Šilhavý: The general form of the relaxation of a purely interfacial energy for structured deformations. Math. Mech. Complex Syst. 5 (2017), 191–215.

    Article  MathSciNet  MATH  Google Scholar 

  53. X. T. Su, Z. J. Yang, G. H. Liu: Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: A 3D study. Int. J. Solids Struct. 47 (2010), 2336–2345.

    Article  MATH  Google Scholar 

  54. Y. Sumi: Mathematical and Computational Analyses of Cracking Formation. Mathematics for Industry (Tokyo) 2. Springer, Tokyo, 2014.

    MATH  Google Scholar 

  55. E. Svenning, F. Larsson, M. Fagerström: A two-scale modeling framework for strain localization in solids: XFEM procedures and computational aspects. Comput. Struct. 211 (2019), 43–54.

    Article  Google Scholar 

  56. R. F. Swati, L. H. Wen, H. Elahi, A. A. Khan, S. Shad: Extended finite element method (XFEM) analysis of fiber reinforced composites for prediction of micro-crack propagation and delaminations in progressive damage: A review. Microsyst. Technol. 25 (2019), 747–763.

    Article  Google Scholar 

  57. J. Vala: Structure identification of metal fibre reinforced cementitious composites. Algoritmy: 20th Conference on Scientific Computing. STU Bratislava, Bratislava, 2016, pp. 244–253.

    Google Scholar 

  58. J. Vala, V. Kozák: Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites. Theor. Appl. Fract. Mech. 107 (2020), Article ID 102486, 8 pages.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Vala.

Additional information

This research has been supported by the project FAST-S-20-6294 of specific university research at Brno University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vala, J., Kozák, V. Non-local damage modelling of quasi-brittle composites. Appl Math 66, 815–836 (2021). https://doi.org/10.21136/AM.2021.0281-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0281-20

Keywords

MSC 2020

Navigation