Skip to main content
Log in

Complete Solution of Tropical Vector Inequalities Using Matrix Sparsification

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We examine the problem of finding all solutions of two-sided vector inequalities given in the tropical algebra setting, where the unknown vector multiplied by known matrices appears on both sides of the inequality. We offer a solution that uses sparse matrices to simplify the problem and to construct a family of solution sets, each defined by a sparse matrix obtained from one of the given matrices by setting some of its entries to zero. All solutions are then combined to present the result in a parametric form in terms of a matrix whose columns form a complete system of generators for the solution. We describe the computational technique proposed to solve the problem, remark on its computational complexity and illustrate this technique with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Akian, S. Gaubert, A. Guterman: Tropical polyhedra are equivalent to mean payoff games. Int. J. Algebra Comput. 22 (2012), Article ID 1250001, 43 pages.

  2. X. Allamigeon, S. Gaubert, R. D. Katz: The number of extreme points of tropical polyhedra. J. Comb. Theory, Ser. A 118 (2011), 162–189.

    Article  MathSciNet  Google Scholar 

  3. F. L. Baccelli, G. Cohen, G. J. Olsder, J.-P. Quadrat: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley Series in Probability and Statistics. Wiley, Chichester, 1992.

    MATH  Google Scholar 

  4. P. Butkovič: Max-Linear Systems: Theory and Algorithms. Springer Monographs in Mathematics. Springer, London, 2010.

    Book  Google Scholar 

  5. P. Butkovič, G. Hegedüs: An elimination method for finding all solutions of the system of linear equations over an extremal algebra. Ekon.-Mat. Obz. 20 (1984), 203–215.

    MathSciNet  MATH  Google Scholar 

  6. P. Butkovič, K. Zimmermann: A strongly polynomial algorithm for solving two-sided linear systems in max-algebra. Discrete Appl. Math. 154 (2006), 437–446.

    Article  MathSciNet  Google Scholar 

  7. B. A. Carré: An algebra for network routing problems. J. Inst. Math. Appl. 7 (1971), 273–294.

    Article  MathSciNet  Google Scholar 

  8. A. H. Clifford, G. B. Preston: The Algebraic Theory of Semigroups. Vol. 1. Mathematical Surveys and Monographs 7. American Mathematical Society, Providence, 1961.

    MATH  Google Scholar 

  9. R. A. Cuninghame-Green: Projections in minimax algebra. Math. Program. 10 (1976), 111–123.

    Article  MathSciNet  Google Scholar 

  10. R. A. Cuninghame-Green: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems 166. Springer, Berlin, 1979.

    Book  Google Scholar 

  11. R. A. Cuninghame-Green: Minimax algebra and applications. Advances in Imaging and Electron Physics. Volume 0. Academic Press, San Diego, 1994, pp. 1–121.

    Google Scholar 

  12. R. A. Cuninghame-Green, P. Butkovič: The equation Ax = By over (max,+). Theor. Comput. Sci. 293 (2003), 3–12.

    Article  Google Scholar 

  13. R. A. Cuninghame-Green, P. Butkovič: Bases in max-algebra. Linear Algebra Appl. 389 (2004), 107–120.

    Article  MathSciNet  Google Scholar 

  14. L. Eisner, P. van den Driessche: Max-algebra and pairwise comparison matrices. II. Linear Algebra Appl. 432 (2010), 927–935.

    Article  MathSciNet  Google Scholar 

  15. S. Gaubert, R. D. Katz: The tropical analogue of polar cones. Linear Algebra Appl. 431 (2009), 608–625.

    Article  MathSciNet  Google Scholar 

  16. S. Gaubert, R. D. Katz, S. Sergeev: Tropical linear-fractional programming and parametric mean payoff games. J. Symb. Comput. 47 (2012), 1447–1478.

    Article  MathSciNet  Google Scholar 

  17. J. S. Golan: Semirings and Affine Equations Over Them: Theory and Applications. Mathematics and Its Applications 556. Kluwer Academic, Dordrecht, 2003.

    Book  Google Scholar 

  18. M. Gondran, M. Minoux: Graphs, Dioids and Semirings: New Models and Algorithms. Operations Research/Computer Science Interfaces Series 41. Springer, New York, 2008.

    MATH  Google Scholar 

  19. B. Heidergott, G. J. Olsder, J. van der Woude: Max Plus at Work. Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, 2006.

    Google Scholar 

  20. D. Jones: On two-sided max-linear equations. Discrete Appl. Math. 254 (2019), 146–160.

    Article  MathSciNet  Google Scholar 

  21. V. N. Kolokoltsov, V. P. Maslov: Idempotent Analysis and Its Applications. Mathematics and Its Applications 401. Kluwer Academic, Dordrecht, 1997.

    Book  Google Scholar 

  22. N. K. Krivulin: Solution of generalized linear vector equations in idempotent algebra. Vestn. St. Petersbg. Univ., Math. 39 (2006), 16–26.

    MathSciNet  Google Scholar 

  23. N. Krivulin: A multidimensional tropical optimization problem with a non-linear objective function and linear constraints. Optimization 64 (2015), 1107–1129.

    Article  MathSciNet  Google Scholar 

  24. N. Krivulin: Extremal properties of tropical eigenvalues and solutions to tropical optimization problems. Linear Algebra Appl. 468 (2015), 211–232.

    Article  MathSciNet  Google Scholar 

  25. N. Krivulin: Algebraic solution of tropical optimization problems via matrix sparsification with application to scheduling. J. Log. Algebr. Methods Program. 89 (2017), 150–170.

    Article  MathSciNet  Google Scholar 

  26. N. Krivulin: Complete algebraic solution of multidimensional optimization problems in tropical semifield. J. Log. Algebr. Methods Program. 99 (2018), 26–40.

    Article  MathSciNet  Google Scholar 

  27. E. Lorenzo, M. J. de la Puente: An algorithm to describe the solution set of any tropical linear system A ⊗ x = Bx. Linear Algebra Appl. 435 (2011), 884–901.

    Article  MathSciNet  Google Scholar 

  28. S. Sergeev: Multiorder, Kleene stars and cyclic projectors in the geometry of max cones. Tropical and Idempotent Mathematics. Contemporary Mathematics 495. American Mathematical Society, Providence, 2009, pp. 317–342.

    Chapter  Google Scholar 

  29. S. Sergeev, E. Wagneur: Basic solutions of systems with two max-linear inequalities. Linear Algebra Appl. 435 (2011), 1758–1768.

    Article  MathSciNet  Google Scholar 

  30. E. Wagneur, L. Truffet, F. Faye, M. Thiam: Tropical cones defined by max-linear inequalities. Tropical and Idempotent Mathematics. Contemporary Mathematics 495. American Mathematical Society, Providence, 2009, pp. 351–366.

    MATH  Google Scholar 

  31. M. Yoeli: A note on a generalization of Boolean matrix theory. Am. Math. Mon. 68 (1961), 552–557.

    Article  MathSciNet  Google Scholar 

  32. K. Zimmermann: A general separation theorem in extremal algebras. Ekon.-Mat. Obz. 13 (1977), 179–201.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author sincerely thanks the anonymous referee for the insightful comments, valuable suggestions and corrections, which have been in-corporated in the revised paper. He is especially grateful for providing a list of important references and for giving a simple solution for Example 6.1 from scratch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Krivulin.

Additional information

This work was supported in part by the Russian Foundation for Basic Research under the grant 20-010-00145.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivulin, N. Complete Solution of Tropical Vector Inequalities Using Matrix Sparsification. Appl Math 65, 755–775 (2020). https://doi.org/10.21136/AM.2020.0376-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2020.0376-19

Keywords

MSC 2020

Navigation