Skip to main content

Advertisement

Log in

Cutaneous homeostasis and epidermal barrier function in a young healthy Caucasian population

  • Investigative Report
  • Published:
European Journal of Dermatology

Abstract

Background

Transepidermal water loss (TEWL), stratum corneum hydration (SCH), and skin surface pH are indicators of skin barrier integrity. There is scant evidence on normative data for cutaneous homeostasis parameters in healthy individuals.

Objectives

To develop normative data for skin erythema, melanin, pH, SCH, and TEWL; identify differences in these variables among different anatomical locations; and explore factors that may modify these values.

Material & Methods

A cross-sectional study was conducted in 87 healthy volunteers (34 males) aged 20 to 40 years. TEWL, SCH, pH, erythema, and melanin were measured on the cheeks, volar forearms, and palms.

Results

The lowest TEWL value corresponded to volar forearms (9.69 ± 2.94 g m−2·h−1) and the highest to palms (49.32 ± 14.55 g m−2·h−1). Erythema was more evident on cheeks than palms or volar forearms (413.51 arbitruary units [AU] vs. 259.98 AU vs. 252.02 AU). The lowest melanin index was documented for palms (92.72 ± 41.70 AU). pH levels were similar among the different locations. The erythema index was significantly higher in males versus females for all locations. Linear regression analysis adjusted for age and SCH revealed an increase in 0.45 ± 0.18 g m−2·h−1 for TEWL on the cheek and 0.32 ± 0.10 g m−2·h−1 for TEWL on the forearm for each one-year increase in age.

Conclusion

We provide normative data for individuals aged 20–40 years, across three anatomical locations, and propose a predictive model for TEWL on the cheek and forearm as a function of age and SCH

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark RAF, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol 2007; 127: 1018–29.

    Article  CAS  Google Scholar 

  2. Kalia YN, Pirot F, Guy RH. Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo. Biophys J 1996; 71: 2692–700.

    Article  CAS  Google Scholar 

  3. Elias PM, Choi EH. Interactions among stratum corneum defensive functions. Exp Dermatol 2005; 14: 719–26.

    Article  Google Scholar 

  4. Basketter D, Darlenski R, Fluhr JW. Skin irritation and sensitization: mechanisms and new approaches for risk assessment. Skin Pharmacol Physiol 2008; 21: 191–202.

    Article  CAS  Google Scholar 

  5. Larcher F, Espada J, Díaz-Ley B, Jaén P, Juarranz A, Quintanilla M. Nuevos modelos experimentales para el estudio de la homeostasis y la enfermedad cutánea. Actas Dermosifiliogr 2015; 106: 17–28.

    Article  CAS  Google Scholar 

  6. Barco D, Giménez-Arnau A. Xerosis: a dysfunction of the epidermal barrier. Actas Dermo-Sifiliográficas 2008; 99: 671–82.

    CAS  PubMed  Google Scholar 

  7. Stefaniak AB, Plessis Jd AB, John SM, et al. International guidelines for the in vivo assessment of skin properties in non-clinical settings: Part 2. transepidermal water loss and skin hydration. Ski Res Technol 2013; 19: 59–68.

    Article  Google Scholar 

  8. Akdeniz M, Gabriel S, Lichterfeld-Kottner A, Blume-Peytavi U, Kottner J. Transepidermal water loss in healthy adults: a systematic review and meta-analysis update. Br J Dermatol 2018; 179: 1049–55.

    Article  CAS  Google Scholar 

  9. Ye L, Wang Z, Li Z, Lv C, Man M-Q. Validation of GPSkin Barrier ® for assessing epidermal permeability barrier function and stratum corneum hydration in humans. Ski Res Technol 2019; 25: 25–9.

    Article  CAS  Google Scholar 

  10. Algiert-Zielińska B, Batory M, Skubalski J, Rotsztejn H. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH. Int J Dermatol 2017; 56: 1192–7.

    Article  Google Scholar 

  11. Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol 2003; 121: 345–53.

    Article  CAS  Google Scholar 

  12. Feingold KR, Schmuth M, Elias PM. The regulation of permeability barrier homeostasis. J Invest Dermatol 2007; 127: 1574–6.

    Article  CAS  Google Scholar 

  13. Armengot-Carbo M, Hernández-Martín Á, Torrelo A. Filagrina: papel en la barrera cutánea y en el desarrollo de patología. Actas Dermosifiliogr 2015; 106: 86–95.

    Article  CAS  Google Scholar 

  14. Fajuyigbe D, Lwin SM, Diffey BL, et al. Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes. FASEB J 2018; 32: 3700–6.

    Article  CAS  Google Scholar 

  15. Khosrowpour Z, Ahmad Nasrollahi S, Ayatollahi A, Samadi A, Firooz A. Effects of four soaps on skin trans-epidermal water loss and erythema index. J Cosmet Dermatol 2018; 18: 857–61.

    Article  Google Scholar 

  16. Darlenski R, Fluhr JW. Influence of skin type, race, sex, and anatomic location on epidermal barrier function. Clin Dermatol 2012; 30: 269–73.

    Article  Google Scholar 

  17. Kottner J, Lichterfeld A, Blume-Peytavi U. Transepidermal water loss in young and aged healthy humans: a systematic review and metaanalysis. Arch Dermatol Res 2013; 305: 315–23.

    Article  Google Scholar 

  18. Nedelec B, Forget NJ, Hurtubise T, et al. Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations. Ski Res Technol 2016; 22: 263–75.

    Article  CAS  Google Scholar 

  19. Tagami H. Location-related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin. Int J Cosmet Sci 2008: 413–34.

  20. Ya-xian Z, Suetake T, Tagami H. Number of cell layers of the stratum corneum in normal skin — relationship to the anatomical location on the body, age, sex and physical parameters. Arch Dermatol Res 1999; 291: 555–9.

    Article  CAS  Google Scholar 

  21. Logger JGM, Münchhoff CU, Olydam JI, Peppelman M, Van Erp PEJ. Anatomical site variation of water content in human skin measured by the Epsilon: a pilot study. Skin Res Technol 2019; 25: 333–8.

    Article  Google Scholar 

  22. Holm EA, Wulf HC, Thomassen L, Jemec GBE. Assessment of atopic eczema: clinical scoring and noninvasive measurements. Br J Dermatol 2007; 147: 674–80.

    Article  Google Scholar 

  23. Song Y, Pan Y. Mapping the face of young population in China: influence of anatomical sites and gender on biophysical properties of facial skin. Skin Res Technol 2019; 25: 325–32.

    Article  Google Scholar 

  24. Plewig G, Marples RR. Regional differences of cell sizes in the human stratum corneum. J Invest Dermatol 1970; 54: 13–8.

    Article  CAS  Google Scholar 

  25. Rawlings AV, Matts PJ. Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 2005; 124: 1099–110.

    Article  CAS  Google Scholar 

  26. Wa CV, Maibach HI. Mapping the human face: biophysical properties. Skin Res Technol 2010; 25: 38–54.

    Article  Google Scholar 

  27. Alexander H, Brown S, Danby S, Flohr C. Research techniques made simple: transepidermal water loss measurement as a research tool. J Invest Dermatol 2018; 138: 2295–300.e1.

    Article  CAS  Google Scholar 

  28. Machková L, Švadlák D, Dolečková I. A comprehensive in vivo study of Caucasian facial skin parameters on 442 women. Arch Dermatol Res 2018; 310: 691–9.

    Article  Google Scholar 

  29. Greenhalgh DG. A primer on pigmentation. J Burn Care Res 2015; 36: 247–57.

    Article  Google Scholar 

  30. Gunathilake R, Schurer NY, Shoo BA, et al. pH-regulated mechanisms account for pigment-type differences in epidermal barrier function. J Invest Dermatol 2009; 129: 1719–29.

    Article  CAS  Google Scholar 

  31. Man MQ, Lin TK, Santiago JL, et al. Basis for enhanced barrier function of pigmented skin. J Invest Dermatol 2014; 134: 2399–407.

    Article  CAS  Google Scholar 

  32. Machková L, Švadlák D, Dolečková I. A comprehensive in vivo study of Caucasian facial skin parameters on 442 women. Arch Dermatol Res 2018; 310: 691–9.

    Article  Google Scholar 

  33. Baumrin E, Mukansi MM, Sibisi C, Mosam A, Stamatas GN, Dlova NC. Epidermal barrier function in healthy black South African infants compared with adults. Pediatr Dermatol 2018; 35: e425–6.

    Article  Google Scholar 

  34. Kim H, Lee M, Park SY, Kim YM, Han J, Kim E. Age-related changes in lip morphological and physiological characteristics in Korean women. Skin Res Technol 2019; 25: 277–82.

    Article  Google Scholar 

Download references

Acknowledgments and disclosures

Acknowledgments: We would like to thank Richard Davies for improving the English of this manuscript. The results of this study are part of the PhD work of Trinidad Montero-Vilchez. Conflicts of interest: none. Funding: none

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Arias-Santiago.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa-Rueda, M.I., Montero-Vilchez, T., Martinez-Lopez, A. et al. Cutaneous homeostasis and epidermal barrier function in a young healthy Caucasian population. Eur J Dermatol 31, 176–182 (2021). https://doi.org/10.1684/ejd.2021.4021

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2021.4021

Key words

Navigation