Skip to main content
Log in

The microbiome, a new target for ecobiology in dermatology

  • Review
  • Published:
European Journal of Dermatology Aims and scope

Abstract

The skin is the human body’s largest organ colonised by a large community of microorganisms. The ecological community of microorganisms that are present on our body and of the body itself defines the human skin microbiome. Ecobiology is a new scientific approach that is based on the principle that the skin is an ever-evolving ecosystem which interacts with its environment and whose natural resources and mechanisms must be preserved. It explores interconnections and communication between cells as well as between cells and their internal (within the body) and external environments. The close relationship between the host and its inhabitants, the microbiome, is an example for targeted investigations of ecobiology. Exogenous and endogenous factors may lead to dysbiosis. New treatment options that may help the disturbed microbiome to recover and allow the healthy microbiome to maintain its homeostasis may certainly play a future role in dermatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scharschmidt TC, Vasquez KS, Truong HA, et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 2015; 43(5): 1011–21.

    Article  CAS  Google Scholar 

  2. Baviera G, Leoni MC, Capra L, et al. Microbiota in healthy skin and in atopic eczema. Biomed Res Int 2014; 2014: 436921.

    Article  Google Scholar 

  3. Ladizinski B, McLean R, Lee KC, Elpern DJ, Eron L. The human skin microbiome. Int J Dermatol 2014; 53(9): 1177–9.

    Article  Google Scholar 

  4. Oh J, Byrd AL, Park M, Kong HH, Segre JA. Temporal stability of the human skin microbiome. Cell 2016; 165(4): 854–66.

    Article  CAS  Google Scholar 

  5. Kaffenberger BH, Shetlar D, Norton SA, Rosenbach M. The effect of climate change on skin disease in North America. J Am Acad Dermatol 2017; 76(1): 140–7.

    Article  Google Scholar 

  6. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014; 2014: 149185.

    Article  Google Scholar 

  7. Jasson F, Nagy I, Knol AC, Zuliani T, Khammari A, Dreno B. Different strains of Propionibacterium acnes modulate differently the cutaneous innate immunity. Exp Dermatol 2013; 22(9): 587–92.

    Article  CAS  Google Scholar 

  8. Fitz–Gibbon S, Tomida S, Chiu BH, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol 2013; 133(9): 2152–60.

    Article  Google Scholar 

  9. Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL. The microbiome extends to subepidermal compartments of normal skin. Nat Commun 2013; 4: 1431.

    Article  Google Scholar 

  10. Zeeuwen PL, Kleerebezem M, Timmerman HM, Schalkwijk J. Microbiome and skin diseases. Curr Opin Allergy Clin Immunol 2013; 13(5): 514–20.

    Article  CAS  Google Scholar 

  11. Sanchez DA, Nosanchuk JD, Friedman AJ. The skin microbiome: is there a role in the pathogenesis of atopic dermatitis and psoriasis? J Drugs Dermatol 2015; 14(2): 127–30.

    PubMed  Google Scholar 

  12. Seite S, Flores GE, Henley JB, et al. Microbiome of affected and unaffected skin of patients with atopic dermatitis before and after emollient treatment. J Drugs Dermatol 2014; 13(11): 1365–72.

    PubMed  Google Scholar 

  13. Williams MR, Gallo RL. Evidence that human skin microbiome dysbiosis promotes atopic dermatitis. J Invest Dermatol 2017; 137(12): 2460–1.

    Article  CAS  Google Scholar 

  14. Meylan P, Lang C, Mermoud S, et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J Invest Dermatol 2017; 137(12): 2497–504.

    Article  CAS  Google Scholar 

  15. Miodovnik M, Kunstner A, Langan EA, et al. A distinct cutaneous microbiota profile in autoimmune bullous disease patients. Exp Dermatol 2017; 26(12): 1221–7.

    Article  Google Scholar 

  16. Salava A, Lauerma A. Role of the skin microbiome in atopic dermatitis. Clin Transl Allergy 2014; 4: 33.

    Article  Google Scholar 

  17. Salava A, Pereira P, Aho V, et al. Skin microbiome in small–and large–plaque parapsoriasis. Acta Derm Venereol 2017; 97(6): 685–91.

    Article  CAS  Google Scholar 

  18. Ring HC, Bay L, Kallenbach K, et al. Normal skin microbiota is altered in pre–clinical hidradenitis suppurativa. Acta Derm Venereol 2017; 97(2): 208–13.

    Article  CAS  Google Scholar 

  19. Napolitano NA, Mahapatra T, Tang W. The effectiveness of UV–C radiation for facility–wide environmental disinfection to reduce health care–acquired infections. Am J Infect Control 2015; 43: 1342–6.

    Article  Google Scholar 

  20. Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age–related diseases. J Am Geriatr Soc 2015; 63(4): 776–81.

    Article  Google Scholar 

  21. Holmes CJ, Plichta JK, Gamelli RL, Radek KA. Dynamic role of host stress responses in modulating the cutaneous microbiome: implications for wound healing and infection. Adv Wound Care (New Rochelle) 2015; 4: 24–37.

    Google Scholar 

  22. Muszer M, Noszczynska M, Kasperkiewicz K, Skurnik M. Human microbiome: when a friend becomes an enemy. Arch Immunol Ther Exp (Warsz) 2015; 63(4): 287–98.

    Article  CAS  Google Scholar 

  23. Dreno B, Araviiskaia E, Berardesca E, et al. Microbiome in healthy skin, update for dermatologists. J Eur Acad Dermatol Venereol 2016; 30(12): 2038–47.

    Article  CAS  Google Scholar 

  24. Weyrich LS, Dixit S, Farrer AG, Cooper AJ. The skin microbiome: associations between altered microbial communities and disease. Australas J Dermatol 2015; 56(4): 268–74.

    Article  Google Scholar 

  25. Burian M, Bitschar K, Dylus B, Peschel A, Schittek B. The protective effect of microbiota on S. aureus skin colonization depends on the integrity of the epithelial barrier. J Invest Dermatol 2017; 137(4): 976–9.

    Article  CAS  Google Scholar 

  26. Dagnelie MA, Corvec S, Saint–Jean M, et al. Decrease in diversity of propionibacterium acnes phylotypes in patients with severe acne on the back. Acta Derm Venereol 2018; 98(2): 262–7.

    Article  CAS  Google Scholar 

  27. McDowell A, Nagy I, Magyari M, Barnard E, Patrick S. The opportunistic pathogen Propionibacterium acnes: insights into typing, human disease, clonal diversification and CAMP factor evolution. PLoS One 2013; 8(9): e70897.

    Google Scholar 

  28. Grice EA. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin Cutan Med Surg 2014; 33(2): 98–103.

    Article  Google Scholar 

  29. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol 2018; 16(3): 143–55.

    Article  CAS  Google Scholar 

  30. Christensen GJ, Bruggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes 2014; 5(2): 201–15.

    Article  CAS  Google Scholar 

  31. Skabytska Y, Biedermann T. Staphylococcus epidermidis sets things right again. J Invest Dermatol 2016; 136(3): 559–60.

    Article  CAS  Google Scholar 

  32. Jeon J, Mok HJ, Choi Y, et al. Proteomic analysis of extracellular vesicles derived from Propionibacterium acnes. Proteomics Clin Appl 2017; 11((1–2)).

    Google Scholar 

  33. Choi EJ, Lee HG, Bae IH, et al. Propionibacterium acnes–derived extracellular vesicles promote acne–like phenotypes in human epidermis. J Invest Dermatol 2018; 138(6): 1371–9.

    Article  CAS  Google Scholar 

  34. Barnard E, Liu J, Yankova E, et al. Strains of the Propionibacterium acnes type III lineage are associated with the skin condition progressive macular hypomelanosis. Sci Rep 2016; 6: 31968.

    Article  CAS  Google Scholar 

  35. Larese Filon F, Buric M, Fluehler C. UV exposure, preventive habits, risk perception, and occupation in NMSC patients: A case–control study in Trieste (NE Italy). Photodermatol Photoimmunol Photomed 2019; 35: 24–30.

    Article  Google Scholar 

  36. Mijouin L, Hillion M, Ramdani Y, et al. Effects of a skin neuropeptide (substance P) on cutaneous microflora. PLoS One 2013; 8(11): e78773.

    Google Scholar 

  37. N’Diaye A, Mijouin L, Hillion M, et al. Effect of substance P in Staphylococcus aureus and Staphylococcus epidermidis virulence: implication for skin homeostasis. Front Microbiol 2016; 7: 506.

    PubMed  PubMed Central  Google Scholar 

  38. Yan HM, Zhao HJ, Guo DY, Zhu PQ, Zhang CL, Jiang W. Gut microbiota alterations in moderate to severe acne vulgaris patients. J Dermatol 2018; 45(10): 1166–71.

    Article  CAS  Google Scholar 

  39. Deng Y, Wang H, Zhou J, Mou Y, Wang G, Xiong X. Patients with acne vulgaris have a distinct gut microbiota in comparison with healthy controls. Acta Derm Venereol 2018; 98(8): 783–90.

    Article  CAS  Google Scholar 

  40. Navarro–Lopez V, Ramirez–Bosca A, Ramon–Vidal D, et al. Effect of oral administration of a mixture of probiotic strains on SCORAD index and use of topical steroids in young patients with moderate atopic dermatitis: a randomized clinical trial. JAMA Dermatol 2018; 154(1): 37–43.

    Article  Google Scholar 

  41. Notay M, Foolad N, Vaughn AR, Sivamani RK. Probiotics, prebiotics, and synbiotics for the treatment and prevention of adult dermatological diseases. Am J Clin Dermatol 2017; 18(6): 721–32.

    Article  Google Scholar 

  42. Jung GW, Tse JE, Guiha I, Rao J. Prospective, randomized, open–label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in sub jects with mild to moderate acne. J Cutan Med Surg 2013; 17(2): 114–22.

    Article  Google Scholar 

  43. Clark AK, Haas KN, Sivamani RK. Edible plants and their influence on the gut microbiome and acne. Int J Mol Sci 2017; 18(5).

    Google Scholar 

  44. Kwon HH, Yoon JY, Park SY, Min S, Suh DH. Comparison of clinical and histological effects between lactobacillus–fermented Chamaecyparis obtusa and tea tree oil for the treatment of acne: an eight–week double–blind randomized controlled split–face study. Dermatology 2014; 229(2): 102–9.

    Article  CAS  Google Scholar 

  45. Brandwein M, Bentwich Z, Steinberg D. Endogenous antimicrobial peptide expression in response to bacterial epidermal colonization. Front Immunol 2017; 8: 1637.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Dréno.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dréno, B. The microbiome, a new target for ecobiology in dermatology. Eur J Dermatol 29 (Suppl 1), 15–18 (2019). https://doi.org/10.1684/ejd.2019.3535

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2019.3535

Key words

Navigation