Skip to main content
Log in

Characterisation of the circular RNA landscape in mesenchymal stem cells from psoriatic skin lesions

  • Investigative report
  • Published:
European Journal of Dermatology

Abstract

Background

Circular RNAs (circRNAs) have recently emerged as novel non-coding regulatory RNAs, reportedly involved in many biological processes and human diseases. However, the role of circRNAs in the pathogenesis of psoriasis is unclear. Additionally, mesenchymal stem cells (MSCs) are involved in pathological processes associated with immune diseases, including psoriasis.

Objectives

In this study, we determined the circRNA expression profile of MSCs from psoriatic skin lesions and investigated possible mechanisms associated with psoriasis.

Materials & Methods

RNA sequencing was used to detect circRNA expression in MSCs from psoriatic skin lesions and normal skin, and detailed bioinformatic analysis was performed. Our results allowed us to predict a circRNA-microRNA (miRNA) interaction network and subsequently validate seven differentially expressed circRNAs and three miRNAs by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we analysed circRNA expression in plasma to determine the extent of abnormal circRNA circulation in patients with psoriasis.

Results

In total, 6,323 circRNAs were detected, of which 3,227 constituted previously unreported circRNAs. We identified 129 circRNAs that exhibited significantly different expression patterns between the psoriasis and control groups, and established a circRNA-miRNA interaction network through bioinformatic analysis that indicated circRNA interaction with miRNAs associated with psoriasis. Additionally, qRT-PCR results confirmed the differential expression of seven circRNAs as well as the stable expression of three circRNAs in plasma from psoriasis patients, consistent with trends observed in cells.

Conclusions

This is the first study of circRNA expression in psoriasis, indicating possible circRNA involvement in the pathogenesis of psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 2014; 15: 409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li J, Yang J, Zhou P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 2015; 5: 472–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 2010; 16: 2043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Curr Biol 2010; 20: R858–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elder JT, Bruce AT, Gudjonsson JE, et al. Molecular dissection of psoriasis: integrating genetics and biology. J Invest Dermatol 2010; 130: 1213–26.

    Article  CAS  PubMed  Google Scholar 

  6. Nograles KE, Davidovici B, Krueger JG. New insights in the immunologic basis of psoriasis. Semin Cutan Med Surg 2010; 29: 3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf R, Mascia F, Dharamsi A, et al. Gene from a psoriasis susceptibility locus primes the skin for inflammation. Sci Transl Med 2010; 2: 61ra90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang RY, Li L, Wang MJ, Chen XM, Huang QC, Lu CJ. An exploration of the role of microRNAs in psoriasis: a systematic review of the literature. Medicine (Baltimore) 2015; 94: e2030.

    Article  CAS  Google Scholar 

  9. Gulati N, Løvendorf MB, Zibert JR, et al. Unique microRNAs appear at different times during the course of a delayed-type hypersensitivity reaction in human skin. Exp Dermatol 2015; 24: 953–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang W, Yi X, Guo S, et al. A single-nucleotide polymorphism of miR-146a and psoriasis: an association and functional study. J Cell Mol Med 2014; 18: 2225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang S, Hinchliffe TE, Wu T. Biomarkers of an autoimmune skin disease-psoriasis. Genomics Proteomics Bioinformatics 2015; 13: 224–33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hou R, Yin G, An P, et al. DNA methylation of dermal MSCs in psoriasis: identification of epigenetically dysregulated genes. J Dermatol Sci 2013; 72: 103–9.

    Article  CAS  PubMed  Google Scholar 

  13. Liu R, Yang Y, Yan X, Zhang K. Abnormalities in cytokine secretion from mesenchymal stem cells in psoriatic skin lesions. Eur J Dermatol 2013; 23: 600–7.

    CAS  PubMed  Google Scholar 

  14. Liu R, Wang Y, Zhao X, Yang Y, Zhang K. Lymphocyte inhibition is compromised in mesenchymal stem cells from psoriatic skin. Eur J Dermatol 2014; 24: 560–7.

    CAS  PubMed  Google Scholar 

  15. Campanati A, Orciani M, Consales V, et al. Characterization and profiling of immunomodulatory genes in resident mesenchymal stem cells reflect the Th1-Th17/Th2 imbalance of psoriasis. Arch Dermatol Res 2014; 306: 915–20.

    Article  CAS  PubMed  Google Scholar 

  16. Orciani M, Campanati A, Salvolini E, et al. The mesenchymal stem cell profile in psoriasis. Br J Dermatol 2011; 165: 585–92.

    Article  CAS  PubMed  Google Scholar 

  17. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Genomics 2013; 1303: 3997.

    Google Scholar 

  18. Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 2015; 16: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meng X, Chen Q, Zhang P, Chen M. CircPro: an integrated tool for the identification of circRNAs with protein-coding potential. Bioinformatics 2017; 33: 3314–6.

    Article  CAS  PubMed  Google Scholar 

  20. Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun 2016; 7: 12060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA 2014; 20: 1666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xing Z, Chu C, Chen L, Kong X. The use of gene ontology terms and KEGG pathways for analysis and prediction of oncogenes. B iochim Biophys Acta 2016; 1860: 2725–34.

    Article  CAS  Google Scholar 

  23. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428: 726–31.

    Article  CAS  PubMed  Google Scholar 

  24. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010; 11: R90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011; 27: 431–2.

    Article  CAS  PubMed  Google Scholar 

  27. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–7.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 2015; 25: 981–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 2010; 6: e1001233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu H, Guo S, Li W, Yu P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 2015; 5: 12453.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yin X, Low HQ, Wang L, et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun 2015; 6: 6916.

    Article  CAS  PubMed  Google Scholar 

  32. Swindell WR, Stuart PE, Sarkar MK, et al. Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era. BMC Med Genomics 2014; 7: 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qi M, Elion EA. MAP kinase pathways. J Cell Sci 2005; 118: 3569–72.

    Article  CAS  PubMed  Google Scholar 

  34. Mavropoulos A, Rigopoulou EI, Liaskos C, Bogdanos DP, Sakkas LI. The role of p38 MAPK in the aetiopathogenesis of psoriasis and psoriatic arthritis. Clin Dev Immunol 2013; 2013: 569751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He Q, Chen HX, Li W, et al. IL-36 cytokine expression and its relationship with p38 MAPK and NF-κB pathways in psoriasis vulgaris skin lesions. J Huazhong Univ Sci Technolog Med Sci 2013; 33: 594–9.

    Article  CAS  PubMed  Google Scholar 

  36. Johansen C, Funding AT, Otkjaer K, et al. Protein expression of TNF-alpha in psoriatic skin is regulated at a posttranscriptional level by MAPK-activated protein kinase 2. J Immunol 2006; 176: 1431–8.

    Article  CAS  PubMed  Google Scholar 

  37. Dimon-Gadal S, Raynaud F, Evain-Brion D, et al. MAP kinase abnormalities in hyperproliferative cultured fibroblasts from psoriatic skin. J Invest Dermatol 1998; 110: 872–9.

    Article  CAS  PubMed  Google Scholar 

  38. Haase I, Hobbs RM, Romero MR, Broad S, Watt FM. A role for mitogen-activated protein kinase activation by integrins in the pathogenesis of psoriasis. J Clin Invest 2001; 108: 527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Joyce CE, Zhou X, Xia J, et al. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet 2011; 20: 4025–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo S, Zhang W, Wei C, et al. Serum and skin levels of miR-3693p in patients with psoriasis and their correlation with disease severity. Eur J Dermatol 2013; 23: 608–13.

    CAS  PubMed  Google Scholar 

  41. Hawkes JE, Nguyen GH, Fujita M, et al. microRNAs in psoriasis. J Invest Dermatol 2016; 136: 365–71.

    Article  CAS  PubMed  Google Scholar 

  42. Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet 2007; 370: 263–71.

    Article  CAS  PubMed  Google Scholar 

  43. Schon MP, Boehncke WH. Psoriasis. N Engl J Med 2005; 352: 1899–912.

    Article  CAS  PubMed  Google Scholar 

  44. Hong J, Koo B, Koo J. The psychosocial and occupational impact of chronic skin disease. Dermatol Ther 2008; 21: 54–9.

    Article  PubMed  Google Scholar 

  45. Zachariae R, Zachariae H, Blomqvist K, et al. Quality of life in 6497 Nordic patients with psoriasis. Br J Dermatol 2002; 146: 1006–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiming Zhang.

Supplementary data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Wang, Q., Chang, W. et al. Characterisation of the circular RNA landscape in mesenchymal stem cells from psoriatic skin lesions. Eur J Dermatol 29, 29–38 (2019). https://doi.org/10.1684/ejd.2018.3483

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2018.3483

Key words

Navigation