Skip to main content
Log in

Mutations in the ABCG8 gene are associated with sitosterolaemia in the homozygous form and xanthelasmas in the heterozygous form

  • Genes and Skin
  • Published:
European Journal of Dermatology Aims and scope

Abstract

Background

Sitosterol is the most abundant plant sterol found in our diet. Sitosterolemia (OMIM 210250), also known as phytosterolaemia, is a rare autosomal recessive disease caused by the inability to efficiently excrete plant sterol, and is characterized by cutaneous xanthomas and accelerated atherosclerosis. Sitosterolaemia is caused by homozygous or compound heterozygous mutations in either ABCG5 or ABCG8 (both on chromosome 2p21), which encode the sterol efflux transporter ABCG5 (sterolin-1) and ABCG8 (sterolin-2), respectively.

Objectives

To investigate a Tunisian family with several members who manifested with generalized cutaneous xanthomas, whereas others had only isolated xanthelasmas.

Materials & methods

Genetic analysis was performed based on exome sequencing of DNA obtained from five affected individuals and one unaffected individual from a Tunisian family.

Results

A novel mutation in the ABCG8 gene, designated c.965-1G>C, was identified by exome sequencing in the members of this family. The homozygous form was associated with generalized cutaneous xanthomatosis while the heterozygous form was linked to isolated xanthelasmas.

Conclusion

Our results indicate a gene dosage effect of ABCG8 and suggest that individuals at risk should be followed closely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merkens LS, Myrie SB, Steiner RD, Mymin D. Sitosterolemia. In: Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews(R). Seattle (WA), 1993.

    Google Scholar 

  2. Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000; 290: 1771–5.

    Article  CAS  PubMed  Google Scholar 

  3. Lu K, Lee MH, Hazard S, et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 2001; 69: 278–90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang J, Mitsche MA, Lutjohann D, Cohen JC, Xie XS, Hobbs HH. Relative roles of ABCG5/ABCG8 in liver and intestine. J Lipid Res 2015; 56: 319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baila-Rueda L, Mateo-Gallego R, Lamiquiz-Moneo I, Cenarro A, Civeira F. Severe hypercholesterolemia and phytosterolemia with extensive xanthomas in primary biliary cirrhosis: role of biliary excretion on sterol homeostasis. J Clin Lipidol 2014; 8: 520–4.

    Article  PubMed  Google Scholar 

  6. Miettinen TA, Klett EL, Gylling H, Isoniemi H, Patel SB. Liver transplantation in a patient with sitosterolemia and cirrhosis. Gastroenterology 2006; 130: 542–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kidambi S, Patel SB. Sitosterolaemia: pathophysiology, clinical presentation and laboratory diagnosis. J Clin Pathol 2008; 61: 588–94.

    Article  CAS  PubMed  Google Scholar 

  8. Wilund KR, Yu L, Xu F, et al. No association between plasma levels of plant sterols and atherosclerosis in mice and men. Arterioscler Thromb Vasc Biol 2004; 24: 2326–32.

    Article  CAS  PubMed  Google Scholar 

  9. Mannucci L, Guardamagna O, Bertucci P, et al. Betasitosterolaemia: a new nonsense mutation in the ABCG5 gene. Eur J Clin Invest 2007; 37: 997–1000.

    Article  CAS  PubMed  Google Scholar 

  10. Yoo EG. Sitosterolemia: a review and update of pathophysiology, clinical spectrum, diagnosis, and management. Ann Pediatr Endocrinol Metab 2016; 21: 7–14.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Salen G, Horak I, Rothkopf M, et al. Lethal atherosclerosis associated with abnormal plasma and tissue sterol composition in sitosterolemia with xanthomatosis. J Lipid Res 1985; 26: 1126–33.

    CAS  PubMed  Google Scholar 

  12. Bhattacharyya AK, Connor WE. Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest 1974; 53: 1033–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sethuraman G, Sugandhan S, Sharma G, et al. Familial homozygous hypercholesterolemia: report of two patients and review of the literature. Pediatr Dermatol 2007; 24: 230–4.

    Article  PubMed  Google Scholar 

  14. Rios J, Stein E, Shendure J, Hobbs HH, Cohen JC. Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. Hum Mol Genet 2010; 19: 4313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park JH, Chung IH, Kim DH, Choi MH, Garg A, Yoo EG. Sitosterolemia presenting with severe hypercholesterolemia and intertriginous xanthomas in a breastfed infant: case report and brief review. J Clin Endocrinol Metab 2014; 99: 1512–8.

    Article  CAS  PubMed  Google Scholar 

  16. Manchanda Y, Sharma VK. Intertriginous xanthomas: a marker of homozygous type IIa hyperlipoproteinemia. Int J Dermatol 2004; 43: 676–7.

    Article  CAS  PubMed  Google Scholar 

  17. Zak A, Zeman M, Slaby A, Vecka M. Xanthomas: clinical and pathophysiological relations. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158: 181–8.

    PubMed  Google Scholar 

  18. Menotti A, Puddu PE, Lanti M, Maiani G, Fidanza F. Cardiovascular risk factors predict survival in middle-aged men during 50 years. Eur J Intern Med 2013; 24: 67–74.

    Article  PubMed  Google Scholar 

  19. Niu DM, Chong KW, Hsu JH, et al. Clinical observations, molecular genetic analysis, and treatment of sitosterolemia in infants and children. J Inherit Metab Dis 2010; 33: 437–43.

    Article  CAS  PubMed  Google Scholar 

  20. Belamarich PF, Deckelbaum RJ, Starc TJ, Dobrin BE, Tint GS, Salen G. Response to diet and cholestyramine in a patient with sitosterolemia. Pediatrics 1990; 86: 977–81.

    CAS  PubMed  Google Scholar 

  21. Parsons HG, Jamal R, Baylis B, Dias VC, Roncari D. A marked and sustained reduction in LDL sterols by diet and cholestyramine in beta-sitosterolemia. Clin Invest Med 1995; 18: 389–400.

    CAS  PubMed  Google Scholar 

  22. Salen G, Starc T, Sisk CM, Patel SB. Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xanthomatosis. Gastroenterology 2006; 130: 1853–7.

    Article  PubMed  Google Scholar 

  23. Cheng WF, Yuen YP, Chow CB, Au KM, Chan YW, Tam SC. Sitosterolaemia and xanthomatosis in a child. Hong Kong Med J 2003; 9: 206–9.

    CAS  PubMed  Google Scholar 

  24. Escola-Gil JC, Quesada H, Julve J, Martin-Campos JM, Cedo L, Blanco-Vaca F. Sitosterolemia: diagnosis, investigation, and management. Curr Atheroscler Rep 2014; 16: 424.

    Article  PubMed  Google Scholar 

  25. Rees DC, Iolascon A, Carella M, et al. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/ macrothrombocytopenia) is the haematological presentation of phytosterolaemia. Br J Haematol 2005; 130: 297–309.

    Article  CAS  PubMed  Google Scholar 

  26. Othman RA, Myrie SB, Jones PJ. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia. Atherosclerosis 2013; 231: 291–9.

    Article  CAS  PubMed  Google Scholar 

  27. Neff AT. Sitosterolemia’s stomatocytosis and macrothrombocytopenia. Blood 2012; 120: 4283.

    Article  PubMed  Google Scholar 

  28. Goodyer M, Lovey J, Menetrey MJ. Peripheral blood features of phytosterolaemia. Br J Haematol 2015; 171: 669.

    Article  PubMed  Google Scholar 

  29. El-Rassy I, Bou-Abdallah J, Al-Ghadban S, Bitar F, Nemer G. Absence of NOTCH2 and Hey2 mutations in a familial Alagille syndrome case with a novel frameshift mutation in JAG1. Am J Med Genet A 2008; 146: 937–9.

    Article  Google Scholar 

  30. Izar MC, Tegani DM, Kasmas SH, Fonseca FA. Phytosterols and phytosterolemia: gene-diet interactions. Genes Nutr 2011; 6: 17–26.

    Article  CAS  PubMed  Google Scholar 

  31. Salen G, Shefer S, Nguyen L, Ness GC, Tint GS, Shore V. Sitosterolemia. J Lipid Res 1992; 33: 945–55.

    CAS  PubMed  Google Scholar 

  32. Yu L. The structure and function of Niemann-Pick C1-like 1 protein. Curr Opin Lipidol 2008; 19: 263–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kwon HJ, Palnitkar M, Deisenhofer J. The structure of the NPC1L1 N-terminal domain in a closed conformation. PLoS One 2011; 6: e18722.

    Article  Google Scholar 

  34. Lee RG, Willingham MC, Davis MA, Skinner KA, Rudel LL. Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J Lipid Res 2000; 41: 1991–2001.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Kurban.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardawil, T., Rebeiz, A., Chaabouni, M. et al. Mutations in the ABCG8 gene are associated with sitosterolaemia in the homozygous form and xanthelasmas in the heterozygous form. Eur J Dermatol 27, 519–523 (2017). https://doi.org/10.1684/ejd.2017.3087

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2017.3087

Key words

Navigation