Skip to main content
Log in

How do epidermal matrix metalloproteinases support re-epithelialization during skin healing?

  • SPIM 2014 Proceedings
  • Published:
European Journal of Dermatology Aims and scope

Abstract

Epithelialization of normal wounds occurs by an orderly series of events whereby keratinocytes migrate, proliferate, and differentiate to restore the epidermal barrier function. Keratinocyte migration is one of the earliest and crucial events determining the efficiency of the overall wound repair process. In response to various stimuli including that of growth factors, cytokines and the extracellular matrix, activated keratinocytes at the edges of the wound undergo dramatic morphological changes according to their migratory behaviour through development of protrusive adhesion contacts and cytoskeleton rearrangements. These phenotypic changes are accompanied by the upregulated expression of a newset of genes, among which are adhesion receptors and specific matrix degrading enzymes named matrix metalloproteinases (MMPs). The tightly regulated spatial and temporal MMP expression is crucial for proper re-epithelialization. These multi-domain zinc-containing endopeptidases are necessary for the proper completion of multiple features of epidermal regeneration. They play a key role in the migration process by controlling the repeated cycles of keratinocyte attachment and retraction. In the meantime, they process, degrade or remodel the extracellular matrix often producing cleavages in a gain-of-function manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark RAF. Wound repair. Lessons for tissue engineering. In: Lanza RP, Langer R, Chick W, editors. Principles of Tissue Engineering. San Diego: Acad Press, 1997, p. 737–68.

    Google Scholar 

  2. Roper JA, Williamson RC, Bass MD. Syndecan and integrin interactomes: large complexes in small spaces. Curr Opin Struct Biol 2012; 22: 583-90.

    Google Scholar 

  3. Larjava H, Salo T, Haaspasalmi K, Kramer RH, Heino J. Expression of integrins and basement membrane components by wound keratinocytes. J Clin Invest 1993; 92: 1425-35.

    Google Scholar 

  4. Jacinto A, Martinez-Arias A, Martin P. Mechanisms of epithelial fusion and repair. Nat Cell Biol 2001; 3: 117-23.

    Google Scholar 

  5. Woodley DT. Reepithelialization. In: The Molecular and Cellular Biology ofWound Repair. Second edition. R.A.F. Clark, editor. Plenum Press, New York. 1996:339–54.

  6. Paladini RD, Takahashi K, Bravo NS, Coulombe PA. Onset of reepithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J Cell Biol 1996; 132: 381–97.

    Article  CAS  PubMed  Google Scholar 

  7. Rousselle P, Lunstrum GP, Keene DR, Burgeson RE. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol 1991; 114: 567–76.

    Article  CAS  PubMed  Google Scholar 

  8. Carter WG, Ryan MC, Gahr PJ. Epiligrin, a new cell adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membrane. Cell 1991; 65: 599–610.

    Article  CAS  PubMed  Google Scholar 

  9. Hamill KJ, McLean WH. The alpha-3 polypeptide chain of laminin 5: Insight into wound healing responses from the study of genodermatoses. Clin Exp Dermatol 2005; 30: 396–404.

    Article  Google Scholar 

  10. Rousselle P, Beck K. Laminin 332 processing impacts cellular behavior. Cell Adh Migr 2013; 7: 122–34.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hubner G, Werner S. Serum growth factors and pro-inflammatory cytokines are potent inducers of activin expression in cultured fibroblasts and keratinocytes. Exp Cell Res 1996; 228: 106–13.

    Article  CAS  PubMed  Google Scholar 

  12. Werner S, Grose R. Regulation of wound healing by growth factors and cytocines. Physiol Rev 2003; 33: 835–70.

    Google Scholar 

  13. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen 2008; 16: 585–601.

    Article  PubMed  Google Scholar 

  14. Freedberg IM, Tomic-Canic M, Komine M, Blumenberg M. Keratins and the keratinocyte activation cycle. J Invest Dermatol 2001; 116: 633–40.

    Article  CAS  PubMed  Google Scholar 

  15. Kondo T, Ohshima T. The dynamics of inflammatory cytokines in the healing process of mouse skin wound: A preliminary study for possible wound age determination. Int J Legal Med 1996; 108: 231–6.

    Article  CAS  PubMed  Google Scholar 

  16. Sugawara T, Gallucci RM, Simeonova PP, Luster MI. Regulation and role of interleukin 6 in wounded human epithelial keratinocytes. Cytokine 2001; 15: 328–36.

    Article  CAS  PubMed  Google Scholar 

  17. Fahey TJD, Sadaty A, Jones WGD, Barber A, Smoller B, Shires GT. Diabetes impairs the late inflammatory response to wound healing. J Surg Res 1991; 50: 308–13.

    Article  PubMed  Google Scholar 

  18. Gallucci RM, Sugawara T, Yucesoy B, et al. Interleukin-6 treatment augments cutaneous wound healing in immunosuppressed mice. J Interferon Cytokine Res 2001; 21: 603–9.

    Article  CAS  PubMed  Google Scholar 

  19. Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 2003; 73: 713–21.

    Article  CAS  PubMed  Google Scholar 

  20. Michel G, Kemeny L, Peter RU, et al. Interleukin-8 receptormediated chemotaxis of normal human epidermal cells. FEBS Lett 1992; 305: 241–3.

    Article  CAS  PubMed  Google Scholar 

  21. Devalaraja RM, Nanney LB, Du J, et al. Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 2000; 115: 234–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Vassar R, Fuchs E. Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev 1991; 5: 714–27.

    Article  CAS  PubMed  Google Scholar 

  23. Schneider MK, Werner S, Paus R, Wolf E. The epidermal growth factor receptor and its ligands in skin biology and pathology. Am J of Pathol 2008; 173: 14–24.

    Article  CAS  Google Scholar 

  24. Shiraha H, Glading A, Cupta K, Wells A. IP-10 inhibits epidermal growth factor–induced motility by decreasing epidermal growth factor receptor–mediated calpain activity. J Cell Biol 1999; 146: 243–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Schultz G, Rotatori DS, Clark W. AGF and TGF-alpha in wound healing and repair. J Cell Biochem 1991; 45: 346–52.

    Article  CAS  PubMed  Google Scholar 

  26. Brown GL, Curtsinger LJ, White M, et al. Acceleration of tensile strength of incision treated with EGF and TGF–beta. Ann Surg 1988; 208: 788–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Brown DL, Kane CD, Chernausek SD, Greenhalgh DG. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. Am J Pathol 1997; 151: 715–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Jiang CK, Magnaldo T, Ohtsuki M, Freedberg IM, Bernerd F, Blunenberg M. Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation- associated keratins 6 and 16. Proc Natl Acad Sci USA 1993; 90: 6786–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Haase I, Evans R, Pofahl R, Watt FM. Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGFdependent signalling pathways. J Cell Sci 2003; 116: 3227–38.

    Article  CAS  PubMed  Google Scholar 

  30. Marikovsky M, Breuing K, Yu Liu, et al. Appearance of heparinbinding EGF-like growth factor in wound fluid as a response to injury. 1993; 90: 3889–93.

    CAS  Google Scholar 

  31. Castrogiovanni P, Mazzone V, Imbesi R. Immunolocalization of HB-EGF in human skin by streptavidin-peroxidase (HRP) conjugate method. Int J Morphol 2011; 29: 1162–7.

    Article  Google Scholar 

  32. Stoll SW, Rittié J, Johnson JL, Elder JT. Heparin-binding EGF-like growth factor promotes epithelial-mesenchymal transition in human keratinocytes. J Invest Dermatol 2012; 132: 2148–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341: 738–46.

    Article  CAS  PubMed  Google Scholar 

  34. Henry C, Li W, Garner W, Woodley DT. Migration of human keratinocytes in plasma and serum and wound re-epithelialization. Lancet 2003; 361: 574–6.

    Article  CAS  PubMed  Google Scholar 

  35. Ceccarelli S, Cardinali G, Aspite N, et al. Cortactin involvement in the keratinocyte growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes. Exp Cell Res 2007; 313: 1758–77.

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Fu X, Li J. Effect of keratinocyte growth factor-2 on proliferation of human adult keratinocytes. Chin J Traumatol 2002; 5: 342–5.

    CAS  PubMed  Google Scholar 

  37. Tsuboi R, Sato C, Kunta Y, Ron D, Rubin JS, Ogawa H. Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes. J Invest Dermatol 1993; 101: 49–53.

    Article  CAS  PubMed  Google Scholar 

  38. Faler BJ, Macsata RA, Plummer D, Mishra L, Sidawy AN. Transforming growth factor beta and wound healing. Perspect Vasc Surg Endovasc Ther 2006; 18: 55–62.

    Article  PubMed  Google Scholar 

  39. Gailit J, Welch MP, Clark RA. TGFbeta 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds J Invest Dermatol 1994; 103: 221–7.

    CAS  Google Scholar 

  40. Zambruno G, Marchisio PC, Marconi A, et al. Transforming growth factor beta-1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes: implications of wound healing. J Cell Biol 1995; 129: 853–6.

    Article  CAS  PubMed  Google Scholar 

  41. Décline F, Rousselle P. Keratinocyte migration requires α2β1 integrin-mediated interaction with the laminin 5 γ2 chain. J Cell Sci 2001; 114: 811–23.

    PubMed  Google Scholar 

  42. Décline F, Okamoto O, Mallein-Gerin F, et al. Keratinocyte motility induced by TGF-beta 1 is accompanied by dramatic changes in cellular interactions with laminin 5. Cell Motil Cytoskeleton 2003; 54: 64–80.

    Article  PubMed  Google Scholar 

  43. Mauviel A, Chen Y, Dong N, Evans CH, Uitto J. Transcriptional interactions of transforming growth factor–beta (TGFb) with proinflammatory cytokines. Current Biol 1993; 3: 822–31.

    Article  CAS  Google Scholar 

  44. Mauviel A, Chung KY, Agarawl A, Tamai K, Uitto J. Cell-specific induction of distinct oncogenes of the Jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor–beta in fibroblasts and keratinocytes. J Biol Chem 1996; 271: 10917–23.

    Article  CAS  PubMed  Google Scholar 

  45. Verrecchia F, Tacheau C, Schorpp-Kistner M, Angel P, Mauviel A. Induction of the AP-1 members c-Jun and JunB by TGFbeta/ Smad suppresses early Smad-driven gene activation. Oncogene 2001; 20: 2205–11.

    Article  CAS  PubMed  Google Scholar 

  46. Verrecchia F, Vindevoghel L, Lechieider RJ, Uitto J, Roberts AB, Mauviel A. Smad3/AP-1 interactions control transcriptional responses to TGF beta in a promoter-specific manner. Oncogene 2001; 20: 3332–40.

    Article  CAS  PubMed  Google Scholar 

  47. Emmerson E, Campbell L, Davies FCJ, et al. Insulin-Like Growth Factor-1 Promotes Wound Healing in Estrogen-Deprived Mice: New Insights into Cutaneous IGF-1R/ERa Cross Talk. J. Invest. Dermatol 2012; 132: 2838–48.

    Article  CAS  PubMed  Google Scholar 

  48. Mann A, Breuhahn K, Schirmacher P, Blessing M. Keratinocytederived granulocyte-macrophage colony stimulating factor accelerates wound healing: stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J Invest Dermatol 2001; 117: 1382–90.

    Article  CAS  PubMed  Google Scholar 

  49. Maskos K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 2005: 249–63.

    Google Scholar 

  50. Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol 2007; 26: 587–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2002; 2: 657–72.

    Article  CAS  PubMed  Google Scholar 

  52. Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Current opinion in cell biology 2004; 16: 558–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Parks WC, Wilson GL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev 2004; 4: 617–29.

    Article  CAS  Google Scholar 

  54. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer 2002; 2: 161–74.

    Article  CAS  Google Scholar 

  55. Nagase H, Visse R, Murphy W. Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research 2006; 69: 562–73.

    Article  CAS  PubMed  Google Scholar 

  56. Sterlicht MD, Werb Z. How matrix metalloproteinases regulate cell behaviour. Annu Rev Cell Biol 2001; 17: 463–516.

    Article  Google Scholar 

  57. Odland G, Ross R. Human Wound Repair I Epidermal Regeneration. J Cell Biol 1968; 39: 135–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Löffek KS, Schilling O, Franzke CW. Biological role of matrix metalloproteinases: a critical balance. Eur Respir J 2001; 38: 191–208.

    Article  Google Scholar 

  59. Hiraoka N, Allen E, Appel N, Gyetko MR, Weiss SJ. Matrix Metalloproteinases regulate neovascularization by acting as pericellular fibrinolysis. Cell 1998; 95: 365–77.

    Article  CAS  PubMed  Google Scholar 

  60. Joo CK, Seomun Y. Matrix metalloproteinase (MMP) and TGF-1- stimulated cell migration in skin and cornea wound healing. Cell Adhesion & Migration 2008; 4: 252–3.

    Article  Google Scholar 

  61. Zigrino P, Ayachi O, Schild A, et al. Loss of epidermal MMP- 14 expression interferes with re-epithelialization. Eur J Cell Biol 2012; 10: 748–56.

    Article  Google Scholar 

  62. Madlener M, Parks WS, Werner S. Matrix metalloproteinases and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 1998; 242: 201–10.

    Article  CAS  PubMed  Google Scholar 

  63. Suomela S, Kariniemi A-L, Impola U, et al. Matrix metalloproteinase-19 is expressed by keratinocytes in psoriasis. Acta Derm Venereol 2003; 83: 108–14.

    Article  CAS  PubMed  Google Scholar 

  64. Saarialho-Kere UK. Patterns of matrix metalloproteinase and TIMP expression in chronic ulcers. Arch Dermatol Res 1998; 290: S47–54.

    Article  CAS  PubMed  Google Scholar 

  65. Pal-Ghosh S, Blanco T, Tadvalkar G, et al. MMP9 cleavage of the -4 integrin ectodomain leads to recurrent epithelial erosions in mice. J Cell Sci 2011; 124: 2666–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Saarialho-Kere U, Kerkela ED, Jahkola T, Suomela S, Keski-Oja J, Lohi J. Epilysin (MMP-28) Expression is Associated with Cell Proliferation During Epithelial Repair J Invest Dermatol 2002; 119: 14–21.

    CAS  Google Scholar 

  67. Stossel TP. On the crawling of animal cells. Science 1993; 260: 1086–94.

    Article  CAS  PubMed  Google Scholar 

  68. Galbraith CG, Sheetz MP. Forces on adhesive contacts affect cell function. Curr Opin Cell Biology 1998; 10: 566–71.

    Article  CAS  Google Scholar 

  69. Lee J, Ishihara A, Jacobson K. How cells move along surfaces? Trends Cell Biol 1993; 3: 366–70.

    Article  CAS  PubMed  Google Scholar 

  70. Murphy G, Gavrilovic J. Proteolysis and cell migration. Curr Opin Cell Biol 1999; 11: 614–21.

    Article  CAS  PubMed  Google Scholar 

  71. Pilcher BK, Sudbeck BD, Dumin JA, Welgus HG, Parks WC. Collagenase-1 and collagen in epidermal repair. Arch Dermatol Res 1998; 290: S37–46.

    Article  CAS  PubMed  Google Scholar 

  72. Sprandling KD, McDaniel AE, Lohi J, Pilcher BK. Epsin 3 is a novel extracellular matrix-induced transcript specific to wounded epithelia. J Biol Chem 2001; 276: 29257–67.

    Article  Google Scholar 

  73. Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 1997; 137: 1445–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Saarialho-Kere UK, Chang ES, Welgus HG, Parks WCJ. Distinct localization of collagenase and TIMP expression in wound healing associated with ulcerative pyrogenic granuloma. Clin Invest 1992; 90: 1952–7.

    Article  CAS  Google Scholar 

  75. Saarialho-Kere UK, Kovacs SO, Pentland AP, Olerud J, Welgus HG, Parks WC. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. Clin Invest 1993; 92: 2858–66.

    Article  CAS  Google Scholar 

  76. Sudbeck BD, Pilcher BK, Welgus HG, Parks WC. Induction and repression of collagenase-1 by distinct components of different extracellular matrix compartments. J Biol Chem 1997; 29: 22103–10.

    Article  Google Scholar 

  77. Mohan R, Jung JC, Villar WVL, et al. Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem 2002; 277: 2065–72.

    Article  CAS  PubMed  Google Scholar 

  78. Thomas GJ, Poomsawat S, Lewis MP, Hart IR, Speight PM, Marshall JF. avb6 Integrin Upregulates Matrix Metalloproteinase 9 and Promotes Migration of Normal Oral Keratinocytes. J Invest Dermatol 2001; 116: 898–904.

    Article  CAS  PubMed  Google Scholar 

  79. Scott KA, Arnott CH, Robinson SC, et al. TNF-a regulates epithelial expression of MMP-9 and integrin avb6 during tumour promotion. A role for TNF-a in keratinocyte migration? Oncogene 2004; 23: 6954–66.

    Article  CAS  PubMed  Google Scholar 

  80. Gordon G, Ledee DR, Feuer W, Fini ME. Cytokines and Signaling Pathways Regulating Matrix Metalloproteinase-9 (MMP-9) Expression in Corneal Epithelial cells. J Cell Physiol 2009; 221: 402–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Legrand C, Gilles C, Zahm JM, et al. Airway epithelial cell migration dynamices: MMP-9 role in cell-extracellular matrix remodelling. J Cell Biol 1999; 146: 517–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Kyriakides TR, Wulsin D, Skokos EA, et al. Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis. Matrix Biol 2009; 28: 65–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Rechardt O, Elomaa O, Vaalamo M, et al. Stromelysin-2 is upregulated during normal wound repair and is induced by cytokines. J Invest Dermatol 2000; 115: 778–87.

    Article  CAS  PubMed  Google Scholar 

  84. Krampert M, Block W, Sasaki T, et al. Activities of the matrix metalloproteinase Stromelysin-2 (MMP-10) in matrix degradation and keratinocyte organization in wounded skin. Mol Biol Cell 2004; 15: 5242–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nature Reviews Mol Cell Biol 2007; 8: 221–33.

    Article  CAS  Google Scholar 

  86. Sadowski T, Dietrich S, Koschinsky F, Sedlacek R. MMP-19 regulates IGF-mediated proliferation, migration and adhesion in human keratinocytes through proteolysis of IGF-like bindinf protein-3. Mol Biol Cell 2003; 14: 4569–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Hieta N, Impola V, López-Otin C, Saarialho-kere U, Kähäri VM. Matrix metalloproteinase-19 expression in dermal wounds and in fibroblasts in culture. J Invest Dermatol 2003; 121: 997–1004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Rousselle.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michopoulou, A., Rousselle, P. How do epidermal matrix metalloproteinases support re-epithelialization during skin healing?. Eur J Dermatol 25 (Suppl 1), 33–42 (2015). https://doi.org/10.1684/ejd.2015.2553

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2015.2553

Keywords

Navigation