Skip to main content
Log in

Interleukin-32 plays an essential role in human calcified aortic valve cells

  • Research Article
  • Published:
European Cytokine Network Aims and scope

Abstract

Interleukin-32 (IL-32) is an inflammatory cytokine produced mainly by T, natural killer, and epithelial cells. Previous studies on IL-32 have primarily investigated its proinflammatory properties. The IL-32 also has been described as an activator of the p38 mitogen-activated protein kinase (MAPK) and NF-κB, and induces several cytokines. In this study, we hypothesized that the inflammatory regulators NF-κB, MAP kinase, STAT1, and STAT3 are associated with the expression of the IL-32 protein in human calcified aortic valve cells. This study comprised aortic valve sclerotic patients and control group patients without calcified aortic valve. Increased IL-32 expression in calcified aortic valvular tissue was shown by immunohistochemical staining and western blotting. There was an increase in NF-κB p65 level, p-ERK, p-JNK, and p-p38 MAPK activation underlying IL-32 expression in the study. The level of p-STAT3 but not p-STAT1 was found to be increased in calcified aortic valve tissue. In cultured primary human aortic valve interstitial cells, inhibition of NF-κB or MAPK kinase pathways results in a decrease of IL-32 expression. Treatment of recombinant IL-32 induced the levels of TNF-α, IL-6, IL-1β, and IL-8. Our findings demonstrate that IL-32 may be an important pro-inflammatory molecule involved in calcific aortic valve disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation 2001; 103: 1522–8.

    Article  PubMed  Google Scholar 

  2. New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 2011; 108: 1381–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Netea MG, Azam T, Ferwerda G, et al. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1β and IL-6 production through a caspase 1-dependent mechanism. Proc Natl Acad Sci U S A 2005; 102: 16309–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Nold MF, Nold-Petry CA, Pott GB, et al. Endogenous IL-32 controls cytokine and HIV-1 production. J Immunol 2008; 181: 557–65.

    Article  PubMed  CAS  Google Scholar 

  5. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 2005; 22: 131–42.

    PubMed  CAS  Google Scholar 

  6. Cagnard NLF, Essabbani A, Devauchelle V, et al. Interleukin-32, CCL2, PF4F1 and GFD10 are the only cytokine/chemokine genes differentially expressed by in vitro cultured rheumatoid and osteoarthritis fibroblast-like synoviocytes. Eur Cytokine Netw 2005; 16: 289–92.

    PubMed  CAS  Google Scholar 

  7. Joosten LA, Netea MG, Kim SH, et al. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc Natl Acad Sci U S A 2006; 103: 3298–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kobayashi H, Lin PC. Molecular characterization of IL-32 in human endothelial cells. Cytokine 2009; 46: 351–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hu Y, Cheng L, Hochleitner BW, Xu Q. Activation of mitogenactivated protein kinases (ERK/JNK) and AP-1 transcription factor in rat carotid arteries after balloon injury. Arterioscler Thromb Vasc Biol 1997; 17: 2808–16.

    Article  PubMed  CAS  Google Scholar 

  10. Lai K, Wang H, Lee WS, Jain MK, Lee ME, Haber E. Mitogenactivated protein kinase phosphatase-1 in rat arterial smooth muscle cell proliferation. J Clin Invest 1996; 98: 1560–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 2006; 4: 211–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang S, Ren J, Khan MF, Cheng AM, Abendschein D, Muslin AJ. Grb2 is required for the development of neointima in response to vascular injury. Arterioscler Thromb Vasc Biol 2003; 23: 1788–93.

    Article  PubMed  CAS  Google Scholar 

  13. Webber JL, Tooze SA. Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J 2010; 29: 27–40.

    Article  PubMed  Google Scholar 

  14. Orlowski RZ, Baldwin ASJ. NF-kappaB as a therapeutic target in cancer. Trends Mol Med 2002; 8: 385–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hernández-Presa MA, Ortego M, Tu˜nón J, et al. Simvastatin reduces NF-kappaB activity in peripheral mononuclear and in plaque cells of rabbit atheroma more markedly than lipid lowering diet. Cardiovasc Res 2003; 57: 168–77.

    Article  PubMed  Google Scholar 

  16. Bromberg JF. Activation of STAT proteins and growth control. Bioessays 2001; 23: 161–9.

    Article  PubMed  CAS  Google Scholar 

  17. Darnell JEJ. STATs and gene regulation. Science 1997; 277: 1630–5.

    Article  PubMed  CAS  Google Scholar 

  18. Ihle JN. STATs: signal transducers and activators of transcription. Cell 1996; 84: 331–4.

    Article  PubMed  CAS  Google Scholar 

  19. Imada K, Leonard WJ. The Jak-STAT pathway. Mol Immunol 2000; 37: 1–11.

    Article  PubMed  CAS  Google Scholar 

  20. Takeda K, Akira S. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 2000; 11: 199–207.

    Article  PubMed  CAS  Google Scholar 

  21. Williams JG. STAT signalling in cell proliferation and in development. Curr Opin Genet Dev 2000; 10: 503–7.

    Article  PubMed  CAS  Google Scholar 

  22. Ng DC, Court NW, dos Remedios CG, Bogoyevitch MA. Activation of signal transducer and activator of transcription (STAT) pathways in failing human hearts. Cardiovasc Res 2003; 57: 333–46.

    Article  PubMed  CAS  Google Scholar 

  23. Podewski EK. Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with endstage dilated cardiomyopathy. Circulation 2003; 107: 798–802.

    Article  PubMed  CAS  Google Scholar 

  24. Chmielewski S, Olejnik A, Sikorski K, et al. STAT1-dependent signal integration between IFNgamma and TLR4 in vascular cells reflect pro-atherogenic responses in human atherosclerosis. PLoS One 2014; 9: e113318.

    Article  CAS  Google Scholar 

  25. Lim W-S, Timmins JM, Seimon TA, et al. STAT1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 2008; 117: 940–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zachary I, Georgia G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 2001; 49: 568–81.

    Article  PubMed  CAS  Google Scholar 

  27. Wang M, Zhang W, Crisostomo P, et al. Endothelial STAT3 plays a critical role in generalized myocardial proinflammatory and proapoptotic signaling. AmJ Physiol Heart Circ Physiol 2007; 293: H2101-8.

    Article  CAS  Google Scholar 

  28. Wang SG, Xu Y, Chen JD, Yang CH, Chen XH. Astragaloside IV stimulates angiogenesis and increases nitric oxide accumulation via JAK2/STAT3 and ERK1/2 pathway. Molecules 2013; 18: 12809–19.

    Article  PubMed  CAS  Google Scholar 

  29. Waxman AB, Mahboubi K, Knickelbein RG, et al. Interleukin-11 and interleukin-6 protect cultured human endothelial cells from H2O2-induced cell death. Am J Respir Cell Mol Biol 2003; 29: 513–22.

    Article  PubMed  CAS  Google Scholar 

  30. Wang Y-M, Lu T-L, Hsu P-N, et al. Ribosome inactivating protein Bchain induces osteoclast differentiation from monocyte/macrophage lineage precursor cells. Bone 2011; 48: 1336–45.

    Article  PubMed  CAS  Google Scholar 

  31. Meng X, Ao L, Song Y, et al. Expression of functional Toll-like receptors 2 and 4 in human aortic valve interstitial cells: potential roles in aortic valve inflammation and stenosis. Am J Physiol Cell Physiol 2008; 294: C29–35.

    Article  PubMed  CAS  Google Scholar 

  32. Messier RHJ, Bass BL, Aly HM, et al. Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J Surg Res 1994; 57: 1–21.

    Article  PubMed  Google Scholar 

  33. Wang YM, Lu TL, Hsu PN, et al. Ribosome inactivating protein Bchain induces osteoclast differentiation from monocyte/macrophage lineage precursor cells. Bone 2011; 48: 1336–45.

    Article  PubMed  CAS  Google Scholar 

  34. Csiszar A, Smith KE, Koller A, Kaley G, Edwards JG, Ungvari Z. Regulation of bone morphogenetic protein-2 expression in endothelial cells. Role of nuclear factor-β activation by tumor necrosis factor-α, H2O2, and high intravascular pressure. Circulation 2005; 111: 2364–72.

    PubMed  CAS  Google Scholar 

  35. Szelag M, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HA. Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 2016; 7: 48788–812.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kao JT, Feng CL, Yu CJ, et al. IL-6, through p-STAT3 rather than p-STAT1, activates hepatocarcinogenesis and affects survival of hepatocellular carcinoma patients: a cohort study. BMC Gastroenterol 2015; 15: 50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zeng Q, Song R, Fullerton DA, et al. Interleukin-37 suppresses the osteogenic responses of human aortic valve interstitial cells in vitro and alleviates valve lesions in mice. Proc Natl Acad Sci U S A 2017; 114: 1631–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sádaba JR, Martínez-Martínez E, Arrieta V, et al. Role for galectin-3 in calcific aortic valve stenosis. J Am Heart Assoc 2016; 5: e004360.

    Article  Google Scholar 

  39. Babu AN, Meng X, Zou N, et al. Lipopolysaccharide stimulation of human aortic valve interstitial cells activates inflammation and osteogenesis. Ann Thorac Surg 2008; 86: 71–6.

    Article  PubMed  Google Scholar 

  40. Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis: the skeleton key. J Am Coll Cardiol 2015; 66: 561–77.

    Article  PubMed  Google Scholar 

  41. Yu Z, Seya K, Daitoku K, Motomura S, Fukuda I, Furukawa KI. Tumor necrosis factor-α accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway. J Pharmacol Exp Ther 2011; 337: 16–23.

    Article  PubMed  CAS  Google Scholar 

  42. Kaden JJ, Kilic R, Sarikoc A, et al. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int J Mol Med 2005; 16: 869–72.

    PubMed  CAS  Google Scholar 

  43. El Husseini D, Boulanger MC, Mahmut A, et al. P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: implication for calcific aortic valve disease. J Mol Cell Cardiol 2014; 72: 146–56.

    Article  PubMed  CAS  Google Scholar 

  44. Kaden JJ, Dempfle CE, Grobholz R, et al. Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis 2003; 170: 205–11.

    Article  PubMed  CAS  Google Scholar 

  45. Nadlonek N, Lee JH, Reece TB, et al. Interleukin-1 beta induces an inflammatory phenotype in human aortic valve interstitial cells through nuclear factor kappa beta. Ann Thorac Surg 2013; 96: 155–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ying Wu.

Additional information

To cite this article: Tsai CL, Chiu YM, Lee YJ, Hsieh CT, Shieh DC, Tsay GJ, Bau DT,Wu YY. Interleukin 32 plays an essential role in human calcified aortic valve cells. Eur. Cytokine Netw. 2018; 29(1): 36-47 doi:10.1684/ecn.2018.0407

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CL., Chiu, YM., Lee, YJ. et al. Interleukin-32 plays an essential role in human calcified aortic valve cells. Eur Cytokine Netw 29, 36–47 (2018). https://doi.org/10.1684/ecn.2018.0407

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2018.0407

Keywords

Navigation