Skip to main content
Log in

Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat, and feed samples

赭曲霉毒素A和玉米赤霉烯酮二联定量胶体金免疫层析试纸条的制备及应用

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

A one-step dual flow immunochromatographic assay (DICGA), based on a competitive format, was developed for simultaneous quantification of ochratoxin A (OTA) and zearalenone (ZEN) in corn, wheat, and feed samples. The limit of detection for OTA was 0.32 ng/ml with a detection range of 0.53‒12.16 ng/ml, while for ZEN it was 0.58 ng/ml with a detection range of 1.06‒39.72 ng/ml. The recovery rates in corn, wheat, and feed samples ranged from 77.3% to 106.3% with the coefficient of variation lower than 15%. Naturally contaminated corn, wheat, and feed samples were analyzed using both DICGA and liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the correlation between the two methods was evaluated using a regression analysis. The DICGA method shows great potential for simple, rapid, sensitive, and cost-effective quantitative detection of OTA and ZEN in food safety control.

中文概要

目的

优化建立二联胶体金免疫层析试纸条, 实现对玉米、面粉和饲料中赭曲霉毒素A和玉米赤霉烯酮的同时快速定量检测。

创新点

采用纳米金颗粒标记真菌毒素单克隆抗体, 基于竞争反应模式, 通过对金颗粒尺寸、免疫层析相关组成材料及缓冲液配方的系列优化, 同时借助手持式信号读取装备, 实现对谷物和饲料中赭曲霉毒素A和玉米赤霉烯酮的同时定量检测。该方法简单、快速且成本低, 与液相色谱串联质谱(LC-MS/MS)一致性良好, 便于基层单位的推广使用。

方法

采用柠檬酸钠还原法制备纳米金颗粒并标记获得金标抗体。通过在基于竞争反应的免疫层析检测体系中, 同时设置两条检测线(T1、T2)以实现两种毒素的同时检测, 最终采用金标信号读数仪实现定量检测。

结论

制备的二联定量胶体金试纸条对赭曲霉毒素A和玉米赤霉烯酮的检测限分别为0.32和0.58 ng/ml (图5), 在玉米、小麦和饲料样本中的加标回收率为77.3%~106.3%, 且变异系数均小于15% (表2)。制备的二联定量胶体金免疫层析试纸条和LC-MS/MS对玉米、小麦和饲料等天然样本中赭曲霉毒素A和玉米赤霉烯酮的定量检测结果相关性较好(表3和图7), 具有较好的应用价值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alshannaq A, Yu JH, 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health, 14(6):632. https://doi.org/10.3390/ijerph14060632

    Article  CAS  PubMed Central  Google Scholar 

  • Anfossi L, Giovannoli C, Giraudi G, et al., 2012. A lateral flow immunoassay for the rapid detection of ochratoxin A in wine and grape must. J Agric Food Chem, 60(46): 11491–11497. https://doi.org/10.1021/jf3031666

    Article  CAS  PubMed  Google Scholar 

  • Asghar MA, Iqbal J, Ahmed A, et al., 2016. Development and validation of a high-performance liquid chromatography method with post-column derivatization for the detection of aflatoxins in cereals and grains. Toxicol Ind Health, 32(6):1122–1134. https://doi.org/10.1177/0748233714547732

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt K, Valenta H, Kersten S, et al., 2016. Determination of T-2 toxin, HT-2 toxin, and three other type A trichothecenes in layer feed by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS)— comparison of two sample preparation methods. Mycotoxin Res, 32(2):89–97. https://doi.org/10.1007/s12550-016-0244-z

    Article  CAS  PubMed  Google Scholar 

  • Bienenmann-Ploum ME, Vincent U, Campbell K, et al., 2013. Single-laboratory validation of a multiplex flow cytometric immunoassay for the simultaneous detection of coccidiostats in eggs and feed. Anal Bioanal Chem, 405(29): 9571–9577. https://doi.org/10.1007/s00216-013-7362-7

    Article  CAS  PubMed  Google Scholar 

  • Burkin AA, Kononenko GP, Soboleva NA, 2002. Groupspecific antibodies against zearalenone and its metabolites and synthetic analogs. Appl Biochem Microbiol, 38(2):169–176. https://doi.org/10.1023/A:1014318818469

    Article  CAS  Google Scholar 

  • Burmistrova NA, Goryacheva IY, Basova EY, et al., 2009. Application of a new anti-zearalenone monoclonal antibody in different immunoassay formats. Anal Bioanal Chem, 395(5):1301–1307. https://doi.org/10.1007/s00216-009-2913-7

    Article  CAS  PubMed  Google Scholar 

  • Byzova NA, Zvereva EA, Zherdev AV, et al., 2010. Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta, 81(3):843–848. https://doi.org/10.1016/j.talanta.2010.01.025

    Article  CAS  PubMed  Google Scholar 

  • Cheat S, Pinton P, Cossalter AM, et al., 2016. The mycotoxins deoxynivalenol and nivalenol show in vivo synergism on jejunum enterocytes apoptosis. Food Chem Toxicol, 87: 45–54. https://doi.org/10.1016/j.fct.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  • Cho YJ, Lee DH, Kim DO, et al., 2005. Production of a monoclonal antibody against ochratoxin A and its application to immunochromatographic assay. J Agric Food Chem, 53(22):8447–8451. https://doi.org/10.1021/jf051681q

    Article  CAS  PubMed  Google Scholar 

  • Chun HS, Choi EH, Chang HJ, et al., 2009. A fluorescence polarization immunoassay for the detection of zearalenone in corn. Anal Chim Acta, 639(1–2): 83–89. https://doi.org/10.1016/j.aca.2009.02.048

    Article  CAS  PubMed  Google Scholar 

  • de Lima Rocha DF, dos Santos Oliveira M, Furlong EB, et al., 2017. Evaluation of the TLC quantification method and occurrence of deoxynivalenol in wheat flour of southern Brazil. Food Addit Contam Part A, 34(12):2220–2229. https://doi.org/10.1080/19440049.2017.1364872

    Article  CAS  Google Scholar 

  • Frens G, 1973. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci, 241(105):20–22. https://doi.org/10.1038/physci241020a0

    Article  CAS  Google Scholar 

  • Gendloff EH, Casale WL, Ram BP, et al., 1986. Haptenprotein conjugates prepared by the mixed anhydride method: cross-reactive antibodies in heterologous antisera. J Immunol Methods, 92(1):15–20. https://doi.org/10.1016/0022-1759(86)90497-7

    Article  CAS  PubMed  Google Scholar 

  • Guo YR, Liu SY, Gui WJ, et al., 2009. Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal Biochem, 389(1):32–39. https://doi.org/10.1016/j.ab.2009.03.020

    Article  CAS  PubMed  Google Scholar 

  • Huang ZB, Xu Y, Li LS, et al., 2012. Development of an immunochromatographic strip test for the rapid simultaneous detection of deoxynivalenol and zearalenone in wheat and maize. Food Control, 28(1):7–12. https://doi.org/10.1016/j.foodcont.2012.04.035

    Article  CAS  Google Scholar 

  • Ji F, Mokoena MP, Zhao HY, et al., 2017. Development of an immunochromatographic strip test for the rapid detection of zearalenone in wheat from Jiangsu province, China. PLoS ONE, 12(5):e0175282. https://doi.org/10.1371/journal.pone.0175282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura O, Sato S, Kajii H, et al., 1989. A sensitive enzymelinked immunosorbent assay of ochratoxin A based on monoclonal antibodies. Toxicon, 27(8):887–897. https://doi.org/10.1016/0041-0101(89)90100-1

    Article  CAS  PubMed  Google Scholar 

  • Kolosova AY, de Saeger S, Sibanda L, et al., 2007. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol. Anal Bioanal Chem, 389(7–8): 2103–2107. https://doi.org/10.1007/s00216-007-1642-z

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Ryu D, 2017. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. J Agric Food Chem, 65(33):7034–7051. https://doi.org/10.1021/acs.jafc.6b04847

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li PW, Zhang Q, et al., 2013. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosens Bioelectron, 49:426–432. https://doi.org/10.1016/j.bios.2013.05.039

    Article  CAS  PubMed  Google Scholar 

  • Liu DW, Liu HY, Zhang HB, et al., 2016. Potential natural exposure of endangered red-crowned crane (Grus japonensis) to mycotoxins aflatoxin B1, deoxynivalenol, zearalenone, T-2 toxin, and ochratoxin A. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(2):158–168. https://doi.org/10.1631/jzus.B1500211

    Article  CAS  Google Scholar 

  • Liu H, Xiu Y, Xu Y, et al., 2017. Development of a colloidal gold immunochromatographic assay (GICA) for the rapid detection of Spiroplasma eriocheiris in commercially exploited crustaceans from China. J Fish Dis, 40(12): 1839–1847. https://doi.org/10.1111/jfd.12657

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Liu Y, Lan MJ, et al., 2016. Evaluation of a watersoluble adjuvant for the development of monoclonal antibodies against small-molecule compounds. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(4):282–293. https://doi.org/10.1631/jzus.B1500278

    Article  CAS  Google Scholar 

  • Long M, Yang SH, Wang Y, et al., 2016. The protective effect of selenium on chronic zearalenone-induced reproductive system damage in male mice. Molecules, 21(12):1687. https://doi.org/10.3390/molecules21121687

    Article  CAS  PubMed Central  Google Scholar 

  • Luo ME, Tang Y, Xiang JJ, et al., 2013. Preparation of antizearalenone monoclonal antibody and preliminary establishment of colloidal gold immunochromatographic assay for zearalenone. Chin J Cell Mol Immunol, 29(7):729–733 (in Chinese). https://doi.org/10.13423/j.cnki.cjcmi.006852

    CAS  Google Scholar 

  • Majdinasab M, Sheikh-Zeinoddin M, Soleimanian-Zad S, et al., 2015. Ultrasensitive and quantitative gold nanoparticlebased immunochromatographic assay for detection of ochratoxin A in agro-products. J Chromatogr B, 974: 147–154. https://doi.org/10.1016/j.jchromb.2014.10.034

    Article  CAS  Google Scholar 

  • Molinelli A, Grossalber K, Krska R, 2009. A rapid lateral flow test for the determination of total type B fumonisins in maize. Anal Bioanal Chem, 395(5):1309–1316. https://doi.org/10.1007/s00216-009-3082-4

    Article  CAS  PubMed  Google Scholar 

  • Perry JL, Christensen T, Goldsmith MR, et al., 2003. Binding of ochratoxin A to human serum albumin stabilized by a protein-ligand ion pair. J Phys Chem B, 107(31):7884–7888. https://doi.org/10.1021/jp034783x

    Article  CAS  Google Scholar 

  • Pierron A, Alassane-Kpembi I, Oswald IP, 2016. Impact of mycotoxin on immune response and consequences for pig health. Anim Nutr, 2(2):63–68. https://doi.org/10.1016/j.aninu.2016.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Heydt M, Geisen R, 2007. A microarray for monitoring the production of mycotoxins in food. Int J Food Microbiol, 117(2):131–140. https://doi.org/10.1016/j.ijfoodmicro.2007.01.014

    Article  CAS  PubMed  Google Scholar 

  • Shim WB, Kim KY, Chung DH, 2009a. Development and validation of a gold nanoparticle immunochromatographic assay (ICG) for the detection of zearalenone. J Agric Food Chem, 57(10):4035–4041. https://doi.org/10.1021/jf900075h

    Article  CAS  PubMed  Google Scholar 

  • Shim WB, Dzantiev BB, Eremin SA, et al., 2009b. One-step simultaneous immunochromatographic strip test for multianalysis of ochratoxin a and zearalenone. J Microbiol Biotechnol, 19(1):83–92.

    CAS  PubMed  Google Scholar 

  • Song CM, Liu QT, Zhi AM, et al., 2011. Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of olaquindox residues. J Agric Food Chem, 59(17):9319–9326. https://doi.org/10.1021/jf202213m

    Article  CAS  PubMed  Google Scholar 

  • Song G, Wu JY, Xie Y, et al., 2017. Monoclonal antibodybased serological assays for detection of Potato virus S in potato plants. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(12):1075–1082. https://doi.org/10.1631/jzus.B1600561

    Article  CAS  Google Scholar 

  • Sun SJ, Xie J, Peng T, et al., 2017. Broad-spectrum immunoaffinity cleanup for the determination of aflatoxins B1, B2, G1, G2, M1, M2 in Ophiocordyceps sinensis and its pharmaceutical preparations by ultra performance liquid chromatography tandem mass spectrometry. J Chromatogr B, 1068–1069:112–118. https://doi.org/10.1016/j.jchromb.2017.10.013

    Article  CAS  Google Scholar 

  • Sun YB, Hu XF, Zhang Y, et al., 2014. Development of an immunochromatographic strip test for the rapid detection of zearalenone in corn. J Agric Food Chem, 62(46): 11116–11121. https://doi.org/10.1021/jf503092j

    Article  CAS  PubMed  Google Scholar 

  • Sun YN, Xing GX, Yang JF, et al., 2016. Development of an immunochromatographic test strip for simultaneous qualitative and quantitative detection of ochratoxin A and zearalenone in cereal. J Sci Food Agric, 96(11):3673–3678. https://doi.org/10.1002/jsfa.7550

    Article  CAS  PubMed  Google Scholar 

  • Torović L, 2018. Aflatoxins and ochratoxin A in flour: a survey of the Serbian retail market. Food Addit Contam Part B Surveill, 11(1):26–32. https://doi.org/10.1080/19393210.2017.1391335

    Article  CAS  PubMed  Google Scholar 

  • Urusov AE, Petrakova AV, Gubaydullina MK, et al., 2017. High-sensitivity immunochromatographic assay for fumonisin B1 based on indirect antibody labeling. Biotechnol Lett, 39(5):751–758. https://doi.org/10.1007/s10529-017-2294-5

    Article  CAS  PubMed  Google Scholar 

  • Wang XC, Fan HX, Fan MX, et al., 2016. A sensitive immunochromatographic assay using colloidal gold-antibody probe for rapid detection of fumonisin B1 in corn. Food Addit Contam Part A, 33(9):1435–1443. https://doi.org/10.1080/19440049.2016.1213429

    Article  CAS  Google Scholar 

  • Wang Y, Liu N, Ning BN, et al., 2012. Simultaneous and rapid detection of six different mycotoxins using an immunochip. Biosens Bioelectron, 34(1):44–50. https://doi.org/10.1016/j.bios.2011.12.057

    Article  CAS  PubMed  Google Scholar 

  • Wang YK, Yan YX, Ji WH, et al., 2013a. Novel chemiluminescence immunoassay for the determination of zearalenone in food samples using gold nanoparticles labeled with streptavidin-horseradish peroxidase. J Agric Food Chem, 61(18):4250–4256. https://doi.org/10.1021/jf400731j

    Article  CAS  PubMed  Google Scholar 

  • Wang YK, Yan YX, Ji WH, et al., 2013b. Rapid simultaneous quantification of zearalenone and fumonisin B1 in corn and wheat by lateral flow dual immunoassay. J Agric Food Chem, 61(21):5031–5036. https://doi.org/10.1021/jf400803q

    Article  CAS  PubMed  Google Scholar 

  • Wu JX, Zhang SE, Zhou XP, 2010. Monoclonal antibodybased ELISA and colloidal gold-based immunochromatographic assay for streptomycin residue detection in milk and swine urine. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 11(1):52–60. https://doi.org/10.1631/jzus.B0900215

    Article  CAS  Google Scholar 

  • Yan QH, Zhou JX, Li HZ, et al., 2015. Coexistence of and interaction relationships between an aflatoxin-producing fungus and a bacterium. Fungal Biol, 119(7):605–614. https://doi.org/10.1016/j.funbio.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Lates V, Prieto-Simón B, et al., 2012. Aptamer-DNAzyme hairpins for biosensing of ochratoxin A. Biosens Bioelectron, 32(1):208–212. https://doi.org/10.1016/j.bios.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  • Yang SP, Zhang HY, Sun FF, et al., 2017. Metabolic profile of zearalenone in liver microsomes from different species and its in vivo metabolism in rats and chickens using ultra high-pressure liquid chromatography-quadrupole/timeof-flight mass spectrometry. J Agric Food Chem, 65(51): 11292–11303. https://doi.org/10.1021/acs.jafc.7b04663

    Article  CAS  PubMed  Google Scholar 

  • Zhang MY, Yan LZ, Huang Q, et al., 2018. Highly sensitive simultaneous detection of major ochratoxins by an immunochromatographic assay. Food Control, 84:215–220. https://doi.org/10.1016/j.foodcont.2017.07.035

    Article  CAS  Google Scholar 

  • Zhang X, Sun MJ, Kang Y, et al., 2015a. Identification of a high-affinity monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay. Toxicon, 106:89–96. https://doi.org/10.1016/j.toxicon.2015.09.028

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang X, Sun MJ, et al., 2015b. A magnetic nanoparticle based enzyme-linked immunosorbent assay for sensitive quantification of zearalenone in cereal and feed samples. Toxins, 7(10):4216–4231. https://doi.org/10.3390/toxins7104216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-huan Fang.

Additional information

Project supported by the Natural Science Foundation of Zhejiang Province (No. LQ17C170002), the Talent-Start Project of Zhejiang A&F University (No. 2016FR025), the Key Research and Development Project Funds of Zhejiang Provincial Science and Technology Department (No. 2018C02041), and the National High-Tech R&D Program (863) of China (No. 2012AA101602)

Electronic supplementary material

11585_2018_318_MOESM1_ESM.pdf

Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat and feed samples

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., He, K., Fang, Y. et al. Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat, and feed samples. J. Zhejiang Univ. Sci. B 19, 871–883 (2018). https://doi.org/10.1631/jzus.B1800085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1800085

Key words

关键词

CLC number

Navigation